Suppr超能文献

复发型多发性硬化症临床残疾的双因素结构

Bifactor structure of clinical disability in relapsing multiple sclerosis.

作者信息

Chamot Eric, Kister Ilya, Cutter Garry R

机构信息

Department of Epidemiology, University of Alabama at Birmingham School of Public Health, 1665 University Blvd, Suite 217H, Birmingham, AL 35294-0022, USA.

NYU-Multiple Sclerosis Care Center, Department of Neurology, NYU School of Medicine, 240 East 38th Street, NY 10016, USA.

出版信息

Mult Scler Relat Disord. 2014 Mar;3(2):176-85. doi: 10.1016/j.msard.2013.06.005. Epub 2013 Jul 12.

Abstract

BACKGROUND

Multiple sclerosis (MS) can affect virtually every neurological function which complicates the conceptualization and assessment of disability. Similar challenges are encountered in other medical fields including child cognitive development and psychiatry, for instance. In these disciplines progress in diagnosis and outcome measurement has been recently achieved by capitalizing on the concept of bifactor model.

OBJECTIVE

To present in accessible terms an application of bifactor confirmatory factor analysis to study the clinical disability outcomes in MS.

METHODS

Data included 480 assessments on 301 patients with relapsing-remitting MS who participated in the North American interferon beta-1a clinical trial (Avonex). Measures consisted of the Expanded Disability Status Scale (EDSS), the three components of the Multiple Sclerosis Functional Composite (MSFC), and five other clinical measures of neurological functions. We determined which of three confirmatory factor analysis models (unidimensional, multidimensional, and bifactor) best described the structure of the data.

RESULTS

EDSS scores ranged from 0 to 8 (94% between 0 and 4). The final bifactor model fitted the data well, explained 59.4% of total variance, and provided the most useful representation of the data. In this model, the nine measures defined a scoring dimension of global neurological function (63.1% of total composite score variance) and two auxiliary dimensions of extra variability in leg and cognitive function (17.1% and 9% of total composite score variance).

CONCLUSION

Bifactor modeling is a promising approach to further understanding of the structure of disability in MS and for refining composite measures of global disability.

摘要

背景

多发性硬化症(MS)几乎会影响每一项神经功能,这使得对残疾的概念化和评估变得复杂。例如,在包括儿童认知发展和精神病学在内的其他医学领域也遇到了类似的挑战。最近,通过利用双因素模型的概念,这些学科在诊断和结果测量方面取得了进展。

目的

以通俗易懂的方式介绍双因素验证性因素分析在研究MS临床残疾结果中的应用。

方法

数据包括对301例复发缓解型MS患者的480次评估,这些患者参与了北美干扰素β-1a临床试验(Avonex)。测量指标包括扩展残疾状态量表(EDSS)、多发性硬化症功能综合量表(MSFC)的三个组成部分以及其他五项神经功能临床测量指标。我们确定了三种验证性因素分析模型(单维、多维和双因素)中哪一种最能描述数据的结构。

结果

EDSS评分范围为0至8(94%在0至4之间)。最终的双因素模型对数据拟合良好,解释了总方差的59.4%,并提供了最有用的数据表示。在该模型中,这九项测量指标定义了一个整体神经功能评分维度(占总综合评分方差的63.1%)以及腿部和认知功能额外变异性的两个辅助维度(分别占总综合评分方差的17.1%和9%)。

结论

双因素建模是进一步理解MS残疾结构和完善整体残疾综合测量指标的一种有前景的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验