Suppr超能文献

茎尖分生组织基于浓度的运输模型中的局部生长素峰值。

Localized auxin peaks in concentration-based transport models of the shoot apical meristem.

作者信息

Draelants Delphine, Avitabile Daniele, Vanroose Wim

机构信息

Department of Mathematics and Computer Science, Universiteit Antwerpen, Middelheimlaan 1, 2020 Antwerpen, Belgium

Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK

出版信息

J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2014.1407.

Abstract

We study the formation of auxin peaks in a generic class of concentration-based auxin transport models, posed on static plant tissues. Using standard asymptotic analysis, we prove that, on bounded domains, auxin peaks are not formed via a Turing instability in the active transport parameter, but via simple corrections to the homogeneous steady state. When the active transport is small, the geometry of the tissue encodes the peaks' amplitude and location: peaks arise where cells have fewer neighbours, that is, at the boundary of the domain. We test our theory and perform numerical bifurcation analysis on two models that are known to generate auxin patterns for biologically plausible parameter values. In the same parameter regimes, we find that realistic tissues are capable of generating a multitude of stationary patterns, with a variable number of auxin peaks, that can be selected by different initial conditions or by quasi-static changes in the active transport parameter. The competition between active transport and production rate determines whether peaks remain localized or cover the entire domain. In particular, changes in the auxin production that are fast with respect to the cellular life cycle affect the auxin peak distribution, switching from localized spots to fully patterned states. We relate the occurrence of localized patterns to a snaking bifurcation structure, which is known to arise in a wide variety of nonlinear media, but has not yet been reported in plant models.

摘要

我们研究了基于浓度的生长素运输模型的一般类中生长素峰的形成,该模型建立在静态植物组织上。使用标准渐近分析,我们证明,在有界域上,生长素峰不是通过主动运输参数中的图灵不稳定性形成的,而是通过对均匀稳态的简单修正形成的。当主动运输较小时,组织的几何形状编码了峰的幅度和位置:峰出现在细胞邻居较少的地方,即域的边界处。我们对两个已知能在生物学上合理的参数值下生成生长素模式的模型进行了理论测试和数值分岔分析。在相同的参数范围内,我们发现现实的组织能够生成多种静止模式,具有可变数量的生长素峰,这些峰可以通过不同的初始条件或主动运输参数的准静态变化来选择。主动运输和生产率之间的竞争决定了峰是保持局部化还是覆盖整个域。特别是,相对于细胞生命周期而言快速的生长素产生变化会影响生长素峰的分布,从局部斑点状态转变为完全图案化状态。我们将局部模式的出现与蛇行分岔结构联系起来,这种结构已知会在多种非线性介质中出现,但尚未在植物模型中报道过。

相似文献

1
Localized auxin peaks in concentration-based transport models of the shoot apical meristem.
J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2014.1407.
2
Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development.
PLoS Comput Biol. 2008 Oct;4(10):e1000207. doi: 10.1371/journal.pcbi.1000207. Epub 2008 Oct 31.
4
Auxin and self-organization at the shoot apical meristem.
J Exp Bot. 2013 Jun;64(9):2579-92. doi: 10.1093/jxb/ert101. Epub 2013 Apr 12.
5
An auxin-driven polarized transport model for phyllotaxis.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1633-8. doi: 10.1073/pnas.0509839103. Epub 2006 Jan 13.
6
Self-organization of plant vascular systems: claims and counter-claims about the flux-based auxin transport model.
PLoS One. 2015 Mar 3;10(3):e0118238. doi: 10.1371/journal.pone.0118238. eCollection 2015.
8
Mathematical study for the mechanism of vascular and spot patterns by auxin and pin dynamics in plant development.
J Theor Biol. 2015 Jan 21;365:12-22. doi: 10.1016/j.jtbi.2014.09.039. Epub 2014 Oct 7.
9
Phyllotaxis: A Matthew Effect in Auxin Action.
Curr Biol. 2016 Dec 5;26(23):R1233-R1235. doi: 10.1016/j.cub.2016.10.019.

引用本文的文献

1
Fluctuations in auxin levels depend upon synchronicity of cell divisions in a one-dimensional model of auxin transport.
PLoS Comput Biol. 2023 Nov 30;19(11):e1011646. doi: 10.1371/journal.pcbi.1011646. eCollection 2023 Nov.
2
Scaling relations for auxin waves.
J Math Biol. 2022 Sep 26;85(4):41. doi: 10.1007/s00285-022-01793-5.
3
Modeling Plant Tissue Development Using VirtualLeaf.
Methods Mol Biol. 2022;2395:165-198. doi: 10.1007/978-1-0716-1816-5_9.
4
Computational Models of Auxin-Driven Patterning in Shoots.
Cold Spring Harb Perspect Biol. 2022 Mar 1;14(3):a040097. doi: 10.1101/cshperspect.a040097.

本文引用的文献

1
Auxin-mediated plant architectural changes in response to shade and high temperature.
Physiol Plant. 2014 May;151(1):13-24. doi: 10.1111/ppl.12099. Epub 2013 Oct 3.
2
Lateral root development in Arabidopsis: fifty shades of auxin.
Trends Plant Sci. 2013 Aug;18(8):450-8. doi: 10.1016/j.tplants.2013.04.006. Epub 2013 May 20.
3
Polar auxin transport: models and mechanisms.
Development. 2013 Jun;140(11):2253-68. doi: 10.1242/dev.079111.
4
Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales.
Plant Cell. 2012 Oct;24(10):3892-906. doi: 10.1105/tpc.112.101550. Epub 2012 Oct 30.
5
Numerical bifurcation analysis of the pattern formation in a cell based auxin transport model.
J Math Biol. 2013 Nov;67(5):1279-305. doi: 10.1007/s00285-012-0588-8. Epub 2012 Sep 27.
6
Leaf asymmetry as a developmental constraint imposed by auxin-dependent phyllotactic patterning.
Plant Cell. 2012 Jun;24(6):2318-27. doi: 10.1105/tpc.112.098798. Epub 2012 Jun 21.
7
Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4668-73. doi: 10.1073/pnas.1201498109. Epub 2012 Mar 5.
8
A novel sensor to map auxin response and distribution at high spatio-temporal resolution.
Nature. 2012 Jan 15;482(7383):103-6. doi: 10.1038/nature10791.
9
A computational model of auxin and pH dynamics in a single plant cell.
J Theor Biol. 2012 Mar 7;296:84-94. doi: 10.1016/j.jtbi.2011.11.020. Epub 2011 Dec 1.
10
On evaluating models in Computational Morphodynamics.
Curr Opin Plant Biol. 2012 Feb;15(1):103-10. doi: 10.1016/j.pbi.2011.09.007. Epub 2011 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验