Mathematical Institute, Universiteit Leiden, P.O. Box 9512, 2300 RA, Leiden, The Netherlands.
Department of Mathematics, Kennesaw State University, 850 Polytechnic Lane, MD #9085, Marietta, GA, 30060, USA.
J Math Biol. 2022 Sep 26;85(4):41. doi: 10.1007/s00285-022-01793-5.
We analyze an 'up-the-gradient' model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We uncover scaling relations for the speed and width of these waves and verify these rigorous results with numerical computations. In addition, we provide explicit expressions for the leading-order wave profiles, which allows the influence of the biological parameters in the problem to be readily identified. Our proofs are based on a generalization of the scaling principle developed by Friesecke and Pego to construct pulse solutions to the classic Fermi-Pasta-Ulam-Tsingou model, which describes a one-dimensional chain of coupled nonlinear springs.
我们分析了植物激素生长素运输通道形成的“上坡”模型,该模型通过生长素介导的 PIN1 生长素转运蛋白的极化来实现。我们表明,该模型允许存在一族由生长素脉冲的高度参数化的行波解。我们揭示了这些波的速度和宽度的标度关系,并通过数值计算验证了这些严格的结果。此外,我们还提供了主导阶波型的显式表达式,这使得问题中的生物学参数的影响可以很容易地被识别。我们的证明基于 Friesecke 和 Pego 为经典的 Fermi-Pasta-Ulam-Tsingou 模型(描述了耦合非线性弹簧的一维链)构建脉冲解而发展的标度原理的推广。