Bhattacharyya Madhumita, Chakrabarti Saikat
Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, 700032, West Bengal, India.
Malar J. 2015 Feb 8;14:70. doi: 10.1186/s12936-015-0562-1.
Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually. Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are uncharacterized experimentally. Application of newer approaches using several "omics" data has become successful for exploring the biological interactions underlying cellular processes. Till date not many system level study has been published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite.
Various graph theoretical approaches were implemented to identify highly interacting hub and central proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out (KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global and local environments of the P. falciparum interaction network.
177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in malarial research.
Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important for regulation of the interactions required for an organism's survival. Important interacting proteins (IIPs) identified using P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis.
恶性疟原虫导致最严重的疟疾形式,每年影响320万人。由于对现有药物耐药性的发生率不断上升,越来越需要发现新的、更有效的抗疟疾药物。尽管恶性疟原虫具有全球重要性,但其绝大多数蛋白质尚未通过实验进行表征。应用使用多种“组学”数据的更新方法已成功用于探索细胞过程背后的生物相互作用。迄今为止,尚未发表许多使用恶性疟原虫蛋白质-蛋白质相互作用的系统水平研究。因此,本研究的目的是开发一种标准化流程,用于大规模蛋白质-蛋白质相互作用网络(PPIN)的结构、功能和拓扑分析,以识别对网络拓扑和完整性重要的蛋白质。在此,恶性疟原虫PPIN已被用作模型,以更好地理解疟原虫生存和发病机制的分子机制。
实施了各种图论方法,以识别对网络完整性至关重要的高度相互作用的枢纽蛋白和中心蛋白。此外,通过计算机模拟敲除(KO)分析来分离重要的相互作用蛋白(IIP),这些蛋白原则上可以对恶性疟原虫相互作用网络的全局和局部环境产生重大影响,从而识别潜在的网络干扰蛋白。
从疟疾(蛋白质:1607;相互作用:4750)PPI网络中鉴定出177个枢纽蛋白和132个中心蛋白。通过计算机模拟敲除实验,还鉴定出131个和99个全局和局部网络干扰蛋白。最后精选出271个恶性疟原虫蛋白作为重要的相互作用蛋白(IIP),它们不仅在病原体内部网络完整性、阶段特异性中起关键作用,而且还与宿主细胞内参与多种代谢途径的各种人类蛋白相互作用。这些IIP可作为疟疾研究中的潜在药物靶点。
PPIN的图论分析可能是一种非常有用的方法,用于识别对生物体生存所需相互作用的调节重要的蛋白质。使用恶性疟原虫PPIN鉴定的重要相互作用蛋白(IIP)提供了一个有用的数据集,其中包含未来药物靶点分析的可能候选物。