IEEE Trans Neural Netw Learn Syst. 2016 Mar;27(3):497-509. doi: 10.1109/TNNLS.2015.2416259. Epub 2015 Apr 14.
This paper presents a novel approximation-based event-triggered control of multi-input multi-output uncertain nonlinear continuous-time systems in affine form. The controller is approximated using a linearly parameterized neural network (NN) in the context of event-based sampling. After revisiting the NN approximation property in the context of event-based sampling, an event-triggered condition is proposed using the Lyapunov technique to reduce the network resource utilization and to generate the required number of events for the NN approximation. In addition, a novel weight update law for aperiodic tuning of the NN weights at triggered instants is proposed to relax the knowledge of complete system dynamics and to reduce the computation when compared with the traditional NN-based control. Nonetheless, a nonzero positive lower bound for the inter-event times is guaranteed to avoid the accumulation of events or Zeno behavior. For analyzing the stability, the event-triggered system is modeled as a nonlinear impulsive dynamical system and the Lyapunov technique is used to show local ultimate boundedness of all signals. Furthermore, in order to overcome the unnecessary triggered events when the system states are inside the ultimate bound, a dead-zone operator is used to reset the event-trigger errors to zero. Finally, the analytical design is substantiated with numerical results.
本文提出了一种新的基于逼近的多输入多输出不确定非线性连续时间系统的事件触发控制方法,该系统采用仿射形式。在基于事件的采样中,控制器采用线性参数化神经网络(NN)进行逼近。在重新审视了基于事件的采样中 NN 逼近性质之后,利用 Lyapunov 技术提出了一种事件触发条件,以减少网络资源的利用,并为 NN 逼近生成所需的事件数量。此外,为了在触发时刻周期性地调整 NN 权重,提出了一种新的权重更新律,与传统的基于 NN 的控制相比,该方法可以放宽对完整系统动力学的了解,并减少计算量。然而,为了避免事件的累积或零行为,保证了非零的正的最小事件间隔。为了分析稳定性,将事件触发系统建模为非线性脉冲动力系统,并利用 Lyapunov 技术证明了所有信号的局部最终有界性。此外,为了克服系统状态在最终边界内的不必要的触发事件,使用死区算子将事件触发误差重置为零。最后,通过数值结果验证了分析设计的合理性。