Suppr超能文献

骨骼肌兴奋性通道病

Channelopathies of skeletal muscle excitability.

作者信息

Cannon Stephen C

机构信息

Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.

出版信息

Compr Physiol. 2015 Apr;5(2):761-90. doi: 10.1002/cphy.c140062.

Abstract

Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K(+) levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are "channelopathies" caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1), and several potassium channels (Kir2.1, Kir2.6, and Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics.

摘要

家族性骨骼肌兴奋性疾病最早在上世纪初被描述,现在已知是由电压门控离子通道突变引起的。其临床表现通常很显著,包括自主收缩后无法放松(肌强直)或严重肌无力的短暂发作(周期性瘫痪)。这些疾病的一个基本特征是症状波动,运动、温度或血清钾离子水平等环境触发因素会对其产生强烈影响。几十年来,这些现象一直吸引着生理学家,在过去25年里,已经确定了这些疾病背后的分子病变,并且机制研究正在为疾病改善的治疗策略提供见解。这些家族性肌纤维兴奋性疾病是由氯离子通道(ClC-1)、钠离子通道(NaV1.4)、钙离子通道(CaV1.1)以及几种钾离子通道(Kir2.1、Kir2.6和Kir3.4)突变引起的“通道病”。本综述综合阐述了突变离子通道功能缺陷之间的机制联系、它们对肌肉兴奋性的影响、这些变化如何导致临床表型以及治疗方法。

相似文献

1
Channelopathies of skeletal muscle excitability.
Compr Physiol. 2015 Apr;5(2):761-90. doi: 10.1002/cphy.c140062.
2
Voltage-sensor mutations in channelopathies of skeletal muscle.
J Physiol. 2010 Jun 1;588(Pt 11):1887-95. doi: 10.1113/jphysiol.2010.186874. Epub 2010 Feb 15.
3
Cold-induced defects of sodium channel gating in atypical periodic paralysis plus myotonia.
Neurology. 2008 Mar 4;70(10):755-61. doi: 10.1212/01.wnl.0000265397.70057.d8. Epub 2007 Sep 26.
4
Periodic paralysis.
Handb Clin Neurol. 2018;148:505-520. doi: 10.1016/B978-0-444-64076-5.00032-6.
5
Pathomechanisms in channelopathies of skeletal muscle and brain.
Annu Rev Neurosci. 2006;29:387-415. doi: 10.1146/annurev.neuro.29.051605.112815.
7
Novel insights into the pathomechanisms of skeletal muscle channelopathies.
Curr Neurol Neurosci Rep. 2012 Feb;12(1):62-9. doi: 10.1007/s11910-011-0238-3.
8
Skeletal muscle channelopathies.
J Neurol. 2002 Nov;249(11):1493-502. doi: 10.1007/s00415-002-0871-5.
9
Electrophysiology and molecular pharmacology of muscle channelopathies.
Rev Neurol (Paris). 2004 May;160(5 Pt 2):S43-8. doi: 10.1016/s0035-3787(04)71005-x.
10
Skeletal muscle sodium channelopathies.
Curr Opin Neurol. 2015 Oct;28(5):508-14. doi: 10.1097/WCO.0000000000000238.

引用本文的文献

1
Molecular genetics of skeletal muscle channelopathies.
J Hum Genet. 2025 Aug 6. doi: 10.1038/s10038-025-01370-w.
2
Normal locomotion in zebrafish lacking the sodium channel NaV1.4 suggests that the need for muscle action potentials is not universal.
PLoS Biol. 2025 Apr 24;23(4):e3003137. doi: 10.1371/journal.pbio.3003137. eCollection 2025 Apr.
3
Potassium-sensitive loss of muscle force in the setting of reduced inward rectifier K current: Implications for Andersen-Tawil syndrome.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2418021122. doi: 10.1073/pnas.2418021122. Epub 2025 Mar 26.
4
Hypokalemic periodic paralysis, a rare yet critical condition: A case report.
Med Int (Lond). 2025 Feb 14;5(2):21. doi: 10.3892/mi.2025.220. eCollection 2025 Mar-Apr.
5
Mechanisms underlying the distinct K+ dependencies of periodic paralysis.
J Gen Physiol. 2025 May 5;157(3). doi: 10.1085/jgp.202413610. Epub 2025 Feb 4.
6
Voltage-gated sodium channels in excitable cells as drug targets.
Nat Rev Drug Discov. 2025 May;24(5):358-378. doi: 10.1038/s41573-024-01108-x. Epub 2025 Feb 3.
8
9
Reduced K build-up in t-tubules contributes to resistance of the diaphragm to myotonia.
J Physiol. 2024 Nov;602(22):6171-6188. doi: 10.1113/JP286636. Epub 2024 Oct 11.
10
Periodic paralysis.
Handb Clin Neurol. 2024;203:39-58. doi: 10.1016/B978-0-323-90820-7.00002-1.

本文引用的文献

1
Defective fast inactivation recovery of Nav 1.4 in congenital myasthenic syndrome.
Ann Neurol. 2015 May;77(5):840-50. doi: 10.1002/ana.24389. Epub 2015 Mar 27.
4
A Kir3.4 mutation causes Andersen-Tawil syndrome by an inhibitory effect on Kir2.1.
Neurology. 2014 Mar 25;82(12):1058-64. doi: 10.1212/WNL.0000000000000239. Epub 2014 Feb 26.
5
NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery.
Brain. 2014 Apr;137(Pt 4):998-1008. doi: 10.1093/brain/awu015. Epub 2014 Feb 18.
6
Beneficial effects of bumetanide in a CaV1.1-R528H mouse model of hypokalaemic periodic paralysis.
Brain. 2013 Dec;136(Pt 12):3766-74. doi: 10.1093/brain/awt280. Epub 2013 Oct 18.
7
Structure and function of voltage-gated sodium channels at atomic resolution.
Exp Physiol. 2014 Jan;99(1):35-51. doi: 10.1113/expphysiol.2013.071969. Epub 2013 Oct 4.
9
Skeletal muscle fatigue.
Compr Physiol. 2012 Apr;2(2):997-1044. doi: 10.1002/cphy.c110029.
10
Non-dystrophic myotonia: prospective study of objective and patient reported outcomes.
Brain. 2013 Jul;136(Pt 7):2189-200. doi: 10.1093/brain/awt133. Epub 2013 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验