†Department of Physics and the Nanometer Structure Consortium (nmC@LU) and ‡MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
ACS Nano. 2015 May 26;9(5):5422-31. doi: 10.1021/acsnano.5b01228. Epub 2015 May 1.
Using in situ surface-sensitive electron microscopy performed in real time, we show that the dynamics of micron-sized Ga droplets on GaP(111) can be manipulated locally using Au nanoparticles. Detailed measurements of structure and dynamics of the surface from microns to atomic scale are done using both surface electron and scanning probe microscopies. Imaging is done simultaneously on areas with and without Au particles and on samples spanning an order of magnitude in particle coverages. Based on this, we establish the equations of motion that can generally describe the Ga droplet dynamics, taking into account three general features: the affinity of Ga droplets to cover steps and rough structures on the surface, the evaporation-driven transition of the surface nanoscale morphology from rough to flat, and the enhanced evaporation due to Ga droplets and Au nanoparticles. Separately, these features can induce either self-propelled random motion or directional motion, but in combination, the self-propelled motion acts to increase the directional motion even if the directional force is 100 times weaker than the random force. We then find that the Au particles initiate a faster native oxide desorption and speed up the rough to flat surface transition in their vicinity. This changes the balance of forces on the Ga droplets near the Au particles, effectively deflecting the droplets from these areas. The model is experimentally verified for the present materials system, but due to its very general assumptions, it could also be relevant for the many other materials systems that display self-propelled random motion.
利用实时原位表面敏感电子显微镜,我们展示了可以使用金纳米粒子对 GaP(111) 上的微米级 Ga 液滴进行局部动力学操控。使用表面电子显微镜和扫描探针显微镜对从微米到原子尺度的表面结构和动力学进行了详细测量。在有和没有 Au 粒子的区域以及跨越粒子覆盖率一个数量级的样品上同时进行成像。在此基础上,我们建立了可以普遍描述 Ga 液滴动力学的运动方程,考虑了三个一般特征:Ga 液滴对覆盖表面台阶和粗糙结构的亲和力、表面纳米形貌从粗糙到平坦的蒸发驱动转变,以及由于 Ga 液滴和 Au 纳米粒子引起的增强蒸发。这些特征单独作用会导致自推进随机运动或定向运动,但组合起来,自推进运动会增加定向运动,即使定向力比随机力弱 100 倍。然后我们发现,Au 粒子会引发更快的本征氧化物解吸,并加速其附近的粗糙到平坦的表面转变。这改变了 Au 粒子附近 Ga 液滴上的力的平衡,有效地使液滴偏离这些区域。该模型已针对当前材料体系进行了实验验证,但由于其非常普遍的假设,它也可能与显示自推进随机运动的许多其他材料体系相关。