Suppr超能文献

[基于陆地卫星8号OLI数据估算植被含水量]

[Estimation of vegetation water content from Landsat 8 OLI data].

作者信息

Zheng Xing-ming, Ding Yan-ling, Zhao Kai, Jiang Tao, Li Xiao-feng, Zhang Shi-yi, Li Yang-yang, Wu Li-li, Sun Jian, Ren Jian-hua, Zhang Xuan-xuan

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Dec;34(12):3385-90.

Abstract

The present paper aims to analyze the capabilities and limitations for retrieving vegetation water content from Landsat8 OLI (Operational Land Imager) sensor-new generation of earth observation program. First, the effect of soil background on canopy reflectance and the sensitive band to vegetation water content were analyzed based on simulated dataset from ProSail model. Then, based on vegetation water indices from Landsat8 OLI and field vegetation water content during June 1 2013 to August 14 2013, the best vegetation water index for estimating vegetation water content was found through comparing 12 different indices. The results show that: (1) red, near infrared and two shortwave infrared bands of OLI sensor are sensitive to the change in vegetation water content, and near infrared band is the most sensitive one; (2) At low vegetation coverage, solar radiation reflected by soil background will reach to spectral sensor and influence the relationship between vegetation water index and vegetation water content, and simulation results from ProSail model also show that soil background reflectance has a significant impact on vegetation canopy reflectance in both wet and dry soil conditions, so the optimized soil adjusted vegetation index (OSAVI) was used in this paper to remove the effect of soil background on vegetation water index and improve its relationship with vegetation water content; (3) for the 12 vegetation water indices, the relationship between MSI2 and vegetation water content is the best with the R-square of 0.948 and the average error of vegetation water content is 0.52 kg · m(-2); (4) it is difficult to estimate vegetation water content from vegetation water indices when vegetation water content is larger than 2 kg · m(-2) due to spectral saturation of these indices.

摘要

本文旨在分析利用陆地卫星8号OLI(业务陆地成像仪)传感器——新一代地球观测计划反演植被含水量的能力和局限性。首先,基于ProSail模型的模拟数据集,分析了土壤背景对冠层反射率的影响以及对植被含水量的敏感波段。然后,基于2013年6月1日至2013年8月14日期间陆地卫星8号OLI的植被水分指数和野外植被含水量,通过比较12种不同的指数,找出了估算植被含水量的最佳植被水分指数。结果表明:(1)OLI传感器的红、近红外和两个短波红外波段对植被含水量变化敏感,近红外波段最为敏感;(2)在植被覆盖度较低时,土壤背景反射的太阳辐射会到达光谱传感器,影响植被水分指数与植被含水量之间的关系,ProSail模型的模拟结果也表明,在湿润和干燥土壤条件下,土壤背景反射率对植被冠层反射率均有显著影响,因此本文采用优化土壤调节植被指数(OSAVI)来消除土壤背景对植被水分指数的影响,改善其与植被含水量的关系;(3)对于12种植被水分指数,MSI2与植被含水量的关系最佳,决定系数R²为0.948,植被含水量平均误差为0.52 kg·m⁻²;(4)当植被含水量大于2 kg·m⁻²时,由于这些指数的光谱饱和,很难从植被水分指数估算植被含水量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验