Roy D P, Kovalskyy V, Zhang H K, Vermote E F, Yan L, Kumar S S, Egorov A
Geospatial Science Center of Excellence, South Dakota State University Brookings, SD 57007, USA.
NASA Goddard Space Flight Center, Terrestrial Information Systems Branch, MD 20771, USA.
Remote Sens Environ. 2016 Jan 12;Volume 185(Iss 1):57-70. doi: 10.1016/j.rse.2015.12.024.
At over 40 years, the Landsat satellites provide the longest temporal record of space-based land surface observations, and the successful 2013 launch of the Landsat-8 is continuing this legacy. Ideally, the Landsat data record should be consistent over the Landsat sensor series. The Landsat-8 Operational Land Imager (OLI) has improved calibration, signal to noise characteristics, higher 12-bit radiometric resolution, and spectrally narrower wavebands than the previous Landsat-7 Enhanced Thematic Mapper (ETM+). Reflective wavelength differences between the two Landsat sensors depend also on the surface reflectance and atmospheric state which are difficult to model comprehensively. The orbit and sensing geometries of the Landsat-8 OLI and Landsat-7 ETM+ provide swath edge overlapping paths sensed only one day apart. The overlap regions are sensed in alternating backscatter and forward scattering orientations so Landsat bi-directional reflectance effects are evident but approximately balanced between the two sensors when large amounts of time series data are considered. Taking advantage of this configuration a total of 59 million 30m corresponding sensor observations extracted from 6,317 Landsat-7 ETM+ and Landsat-8 OLI images acquired over three winter and three summer months for all the conterminous United States (CONUS) are compared. Results considering different stages of cloud and saturation filtering, and filtering to reduce one day surface state differences, demonstrate the importance of appropriate per-pixel data screening. Top of atmosphere (TOA) and atmospherically corrected surface reflectance for the spectrally corresponding visible, near infrared and shortwave infrared bands, and derived normalized difference vegetation index (NDVI), are compared and their differences quantified. On average the OLI TOA reflectance is greater than the ETM+ TOA reflectance for all bands, with greatest differences in the near-infrared (NIR) and the shortwave infrared bands due to the quite different spectral response functions between the sensors. The atmospheric correction reduces the mean difference in the NIR and shortwave infrared but increases the mean difference in the visible bands. Regardless of whether TOA or surface reflectance are used to generate NDVI, on average, for vegetated soil and vegetation surfaces (0 ≤ NDVI ≤ 1), the OLI NDVI is greater than the ETM+ NDVI. Statistical functions to transform between the comparable sensor bands and sensor NDVI values are presented so that the user community may apply them in their own research to improve temporal continuity between the Landsat-7 ETM+ and Landsat-8 OLI sensor data. The transformation functions were developed using ordinary least squares (OLS) regression and were fit quite reliably ( values >0.7 for the reflectance data and >0.9 for the NDVI data, p-values <0.0001).
40多年来,陆地卫星提供了基于空间的陆地表面观测最长的时间记录,2013年陆地卫星8号的成功发射延续了这一传统。理想情况下,陆地卫星数据记录在陆地卫星传感器系列中应保持一致。陆地卫星8号的业务陆地成像仪(OLI)在校准、信噪比特性、更高的12位辐射分辨率以及比之前的陆地卫星7号增强型专题绘图仪(ETM+)更窄的光谱波段方面都有所改进。这两种陆地卫星传感器之间的反射波长差异还取决于难以全面建模的地表反射率和大气状态。陆地卫星8号OLI和陆地卫星7号ETM+的轨道和传感几何结构提供了仅相隔一天感测的条带边缘重叠路径。重叠区域是以交替的后向散射和前向散射方向感测的,因此陆地卫星的双向反射效应很明显,但在考虑大量时间序列数据时,两个传感器之间大致平衡。利用这种配置,对从美国本土(CONUS)三个冬季和三个夏季的6317幅陆地卫星7号ETM+和陆地卫星8号OLI图像中提取的总共5900万30米对应的传感器观测数据进行了比较。考虑了不同阶段的云和气饱和滤波以及用于减少一天地表状态差异的滤波的结果,证明了适当的逐像素数据筛选的重要性。比较了相应光谱的可见、近红外和短波红外波段的大气顶(TOA)和经大气校正的地表反射率,以及导出的归一化植被指数(NDVI),并对它们的差异进行了量化。平均而言,所有波段的OLI TOA反射率都大于ETM+ TOA反射率,由于传感器之间光谱响应函数差异很大,近红外(NIR)和短波红外波段的差异最大。大气校正减小了近红外和短波红外波段的平均差异,但增加了可见波段的平均差异。无论使用TOA还是地表反射率来生成NDVI,平均而言,对于植被土壤和植被表面(0≤NDVI≤1),OLI NDVI都大于ETM+ NDVI。给出了在可比较的传感器波段和传感器NDVI值之间进行转换的统计函数,以便用户群体可以在自己的研究中应用它们,以改善陆地卫星7号ETM+和陆地卫星8号OLI传感器数据之间的时间连续性。转换函数是使用普通最小二乘法(OLS)回归开发的,拟合得相当可靠(反射率数据的r值>0.7,NDVI数据的r值>0.9,p值<0.0001)。