Xiang Wei, Menges Stefanie, Schlachetzki Johannes Cm, Meixner Holger, Hoffmann Anna-Carin, Schlötzer-Schrehardt Ursula, Becker Cord-Michael, Winkler Jürgen, Klucken Jochen
Institute of Biochemistry (Emil-Fischer-Center), Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany.
Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
Mol Neurodegener. 2015 Mar 11;10:8. doi: 10.1186/s13024-015-0004-0.
Aggregation and aggregation-mediated formation of toxic alpha synuclein (aSyn) species have been linked to the pathogenesis of sporadic and monogenic Parkinson's disease (PD). A novel H50Q mutation of aSyn, resulting in the substitution of histidine by glutamine, has recently been identified in PD patients. We have previously shown that the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) induces the formation of HNE-aSyn adducts, thereby promoting aSyn oligomerization and increasing its extracellular toxicity to human dopaminergic neurons. Intriguingly, we identified histidine 50 (H50) of aSyn as one of the HNE modification target residues. These converging lines of evidence support the hypothesis that changes in H50 via posttranslational modification (PTM) and mutation trigger the formation of aggregated, toxic aSyn species, which interfere with cellular homeostasis. In the present study, we aim to elucidate 1) the role of H50 in HNE-mediated aSyn aggregation and toxicity, and 2) the impact of H50 mutation on aSyn pathology. Besides the PD-related H50Q, we analyze a PD-unrelated control mutation, in which H50 is replaced by an arginine residue (H50R).
Analysis of HNE-treated aSyn revealed that H50 is the most susceptible residue of aSyn to HNE modification and is crucial for HNE-mediated aSyn oligomerization. Overexpression of aSyn with substituted H50 in H4 neuroglioma cells reduced HNE-induced cell damage, indicating a pivotal role of H50 in HNE modification-induced aSyn toxicity. Furthermore, we showed in vitro that H50Q/R mutations substantially increase the formation of high density and fibrillar aSyn species, and potentiate the oligomerization propensity of aSyn in the presence of a nitrating agent. Cell-based experiments also revealed that overexpression of H50Q aSyn in H4 cells promotes aSyn oligomerization. Importantly, overexpression of both H50Q/R aSyn mutants in H4 cells significantly increased cell death when compared to wild type aSyn. This increase in cell death was further exacerbated by the application of H2O2.
A dual approach addressing alterations of H50 showed that either H50 PTM or mutation trigger aSyn aggregation and toxicity, suggesting an important role of aSyn H50 in the pathogenesis of both sporadic and monogenic PD.
聚集以及聚集介导的毒性α-突触核蛋白(aSyn)物种的形成与散发性和单基因帕金森病(PD)的发病机制有关。最近在PD患者中发现了一种新的aSyn H50Q突变,导致组氨酸被谷氨酰胺取代。我们之前已经表明,脂质过氧化产物4-羟基-2-壬烯醛(HNE)诱导HNE-aSyn加合物的形成,从而促进aSyn寡聚化并增加其对人多巴胺能神经元的细胞外毒性。有趣的是,我们将aSyn的组氨酸50(H50)鉴定为HNE修饰的靶标残基之一。这些相互印证的证据支持了这样一种假说,即通过翻译后修饰(PTM)和突变导致的H50变化会触发聚集的、有毒的aSyn物种的形成,从而干扰细胞内稳态。在本研究中,我们旨在阐明:1)H50在HNE介导的aSyn聚集和毒性中的作用;2)H50突变对aSyn病理学的影响。除了与PD相关的H50Q,我们还分析了一个与PD无关的对照突变,其中H50被精氨酸残基取代(H50R)。
对经HNE处理的aSyn的分析表明,H50是aSyn中最易受HNE修饰的残基,并且对于HNE介导的aSyn寡聚化至关重要。在H4神经胶质瘤细胞中过表达H50被取代的aSyn可减少HNE诱导的细胞损伤,表明H50在HNE修饰诱导的aSyn毒性中起关键作用。此外,我们在体外表明,H50Q/R突变显著增加了高密度和纤维状aSyn物种的形成,并在存在硝化剂的情况下增强了aSyn的寡聚化倾向。基于细胞的实验还表明,在H4细胞中过表达H50Q aSyn可促进aSyn寡聚化。重要的是,与野生型aSyn相比,在H4细胞中过表达H50Q/R aSyn突变体均显著增加细胞死亡。H2O2的应用进一步加剧了这种细胞死亡的增加。
一种针对H50改变的双重方法表明,H50的PTM或突变均可触发aSyn聚集和毒性,这表明aSyn H50在散发性和单基因PD的发病机制中起重要作用。