Suppr超能文献

大鼠脊髓横断后供体间充质干细胞源性神经元样细胞与宿主神经网络的整合。

Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

机构信息

Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China.

Department of Human Anatomia, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.

出版信息

Biomaterials. 2015 Jun;53:184-201. doi: 10.1016/j.biomaterials.2015.02.073. Epub 2015 Mar 13.

Abstract

Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits.

摘要

脊髓损伤 (SCI) 后的功能缺陷主要归因于神经连接的丧失。因此,我们测试了新的组织工程方法是否可以实现神经网络修复,从而促进脊髓横断 (SCT) 后的功能恢复。通过与过度产生神经营养因子-3 (NT-3) 的施万细胞共培养,将基因工程改造为过表达神经营养因子-3 受体 TrkC 的大鼠骨髓间充质干细胞 (MSCs) 在三维明胶海绵 (GS) 支架中预先分化为具有神经元特征的细胞 14 天。通过电子显微镜 (EM) 形态学验证 MSC 组装体在 GS 内形成类似于神经网络 (MSC-GS),并通过全细胞膜片钳记录自发突触后电流进行功能验证。分化的 MSC 仍部分保留其多能性,表达一些中胚层细胞因子。然后将 MSC-GS 或 GS 急性移植到成年大鼠 T9-T10 脊髓段 2mm 宽的横断间隙中。8 周后,与接受 GS 或仅损伤的对照组相比,MSC-GS 治疗的 SCT 大鼠的后肢功能明显改善,BBB 评分表明。MSC-GS 移植还显著恢复了皮质运动诱发电位 (CMEP)。组织学上,MSC 衍生的神经元样细胞在体内保持其突触样结构;它们还与宿主神经突形成类似的连接(即,主要是 5-羟色胺能纤维加一些皮质脊髓轴突;通过双标记免疫电镜验证)。此外,只有在治疗大鼠的移植和腰髓脊髓细胞中,运动皮层电刺激才能触发 c-fos 表达。我们的数据表明,NT-3-TrkC 诱导分化产生的 MSC 衍生的神经元样细胞可以部分整合到横断的脊髓中,应该进一步研究这种策略来重建受损的神经回路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验