Walters Bradley J, Zuo Jian
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA,
J Assoc Res Otolaryngol. 2015 Jun;16(3):331-45. doi: 10.1007/s10162-015-0517-9. Epub 2015 Apr 21.
Genetic mouse models provide invaluable tools for discerning gene function in vivo. Tetracycline-inducible systems (Tet-On/Off) provide temporal and cell-type specific control of gene expression, offering an alternative or even complementary approach to existing Cre/LoxP systems. Here we characterized a Sox10(rtTA/+) knock-in mouse line which demonstrates inducible reverse tetracycline trans-activator (rtTA) activity and Tet-On transgene expression in the inner ear following induction with the tetracycline derivative doxycycline (Dox). These Sox10(rtTA/+) mice do not exhibit any readily observable developmental or hearing phenotypes, and actively drive Tet-On transgene expression in Sox10 expressing cells in the inner ear. Sox10(rtTA/+) activity was revealed by multiple Tet-On reporters to be nearly ubiquitous throughout the membranous labyrinth of the developing inner ear, and notably absent from hair cells, tympanic border cells, and ganglion neurons following postnatal Dox inductions. Interestingly, Dox-induced Sox10(rtTA/+) activity declined with induction age, where Tet-On reporters became uninducible in adult cochlear epithelium. Co-administration of the loop diuretic furosemide was able to rescue Dox-induced reporter expression, though this method also caused significant cochlear hair cell loss. Surprisingly, Sox10(rtTA/+) driven reporter expression in the cochlea persists for at least 54 days after cessation of neonatal induction, presumably due to the persistence of Dox within inner ear tissues. These findings highlight the utility of the Sox10(rtTA/+) mouse line as a powerful tool for functional genetic studies of the auditory and balance organs in vivo, but also reveal some important considerations that must be adequately controlled for in future studies that rely upon Tet-On/Off systems.
基因小鼠模型为在体内识别基因功能提供了非常有价值的工具。四环素诱导系统(Tet-On/Off)可对基因表达进行时间和细胞类型特异性控制,为现有的Cre/LoxP系统提供了一种替代甚至互补的方法。在此,我们对一种Sox10(rtTA/+)基因敲入小鼠品系进行了表征,该品系在用四环素衍生物强力霉素(Dox)诱导后,在内耳中表现出诱导性反向四环素反式激活因子(rtTA)活性和Tet-On转基因表达。这些Sox10(rtTA/+)小鼠未表现出任何易于观察到的发育或听力表型,并在内耳中表达Sox10的细胞中积极驱动Tet-On转基因表达。多个Tet-On报告基因显示,Sox10(rtTA/+)活性在发育中的内耳膜迷路中几乎无处不在,而在出生后Dox诱导后,毛细胞、鼓膜边缘细胞和神经节神经元中则明显不存在。有趣的是,Dox诱导的Sox10(rtTA/+)活性随诱导年龄而下降,其中Tet-On报告基因在成年耳蜗上皮中变得不可诱导。联合使用袢利尿剂速尿能够挽救Dox诱导的报告基因表达,尽管这种方法也导致了明显的耳蜗毛细胞损失。令人惊讶的是,新生儿诱导停止后,Sox10(rtTA/+)驱动的耳蜗报告基因表达至少持续54天,推测这是由于内耳组织中Dox的持续存在。这些发现突出了Sox10(rtTA/+)小鼠品系作为体内听觉和平衡器官功能基因研究的强大工具的实用性,但也揭示了一些在未来依赖Tet-On/Off系统的研究中必须充分控制的重要因素。