†Nanophotonics Research Center, Future Convergence of Technology Research Division, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea.
‡School of Electrical Engineering, Korea University, Seoul 136-713, Korea.
ACS Nano. 2015 May 26;9(5):5486-99. doi: 10.1021/acsnano.5b01472. Epub 2015 Apr 23.
Single-crystalline alloy II-VI semiconductor nanostructures have been used as functional materials to propel photonic and optoelectronic device performance in a broad range of the visible spectrum. Their functionality depends on the stable modulation of the direct band gap (Eg), which can be finely tuned by controlling the properties of alloy composition, crystallinity, and morphology. We report on the structural correlation of the optical band gap anomaly of quaternary alloy CdxZn1-xSySe1-y single-crystalline nanostructures that exhibit different morphologies, such as nanowires (NWs), nanobelts (NBs), and nanosheets (NSs), and cover a wide range of the visible spectrum (Eg = 1.96-2.88 eV). Using pulsed laser deposition, the nanostructures evolve from NWs via NBs to NSs with decreasing growth temperature. The effects of the growth temperature are also reflected in the systematic variation of the composition. The alloy nanostructures firmly maintain single crystallinity of the hexagonal wurtzite and the nanoscale morphology, with no distortion of lattice parameters, satisfying the virtual crystal model. For the optical properties, however, we observed distinct structure-dependent band gap anomalies: the disappearance of bowing for NWs and maximum and slightly reduced bowing for NBs and NSs, respectively. We tried to uncover the underlying mechanism that bridges the structural properties and the optical anomaly using an empirical pseudopotential model calculation of electronic band structures. From the calculations, we found that the optical bowings in NBs and NSs were due to residual strain, by which they are also distinguishable from each other: large for NBs and small for NSs. To explain the origin of the residual strain, we suggest a semiempirical model that considers intrinsic atomic disorder, resulting from the bond length mismatch, combined with the strain relaxation factor as a function of the width-to-thickness ratio of the NBs or NSs. The model agreed well with the observed optical bowing of the alloy nanostructures in which a mechanism for the maximum bowing for NBs is explained. The present systematic study on the structural-optical properties correlation opens a new perspective to understand the morphology- and composition-dependent unique optical properties of II-VI alloy nanostructures as well as a comprehensive strategy to design a facile band gap modulation method of preparing photoconverting and photodetecting materials.
II-VI 族单晶合金半导体纳米结构已被用作功能材料,在可见光范围内广泛推动光子和光电设备的性能。它们的功能取决于直接带隙 (Eg) 的稳定调制,通过控制合金组成、结晶度和形态的性质可以对其进行精细调整。我们报告了具有不同形态(如纳米线 (NWs)、纳米带 (NBs) 和纳米片 (NSs))的四元合金 CdxZn1-xSySe1-y 单晶纳米结构的光学带隙异常的结构相关性,这些纳米结构在可见光范围内具有较宽的范围 (Eg = 1.96-2.88 eV)。使用脉冲激光沉积,随着生长温度的降低,纳米结构从 NWs 演变到 NBs 再到 NSs。生长温度的影响也反映在组成的系统变化中。合金纳米结构牢固地保持了六方纤锌矿的单晶和纳米级形态,晶格参数没有变形,满足虚拟晶体模型。然而,对于光学性质,我们观察到明显的结构依赖性带隙异常:NWs 中弓型的消失以及 NBs 和 NSs 中弓型的最大值和略有减少。我们试图使用电子能带结构的经验赝势模型计算来揭示连接结构特性和光学异常的潜在机制。从计算中,我们发现 NBs 和 NSs 中的光学弓型是由残余应变引起的,这也使它们彼此区分开来:NBs 较大,NSs 较小。为了解释残余应变的起源,我们提出了一个半经验模型,该模型考虑了由于键长不匹配而导致的固有原子无序,以及应变松弛因子作为 NBs 或 NSs 的宽度与厚度比的函数。该模型与合金纳米结构的观察到的光学弓型吻合良好,其中解释了 NBs 中最大弓型的机制。对结构-光学性质相关性的系统研究为理解 II-VI 族合金纳米结构的形态和组成依赖性独特光学性质开辟了新视角,以及设计用于制备光转换和光电探测材料的简便带隙调制方法的综合策略。