Jacobs University Bremen , Campus Ring 1, 28759 Bremen, Germany.
Acc Chem Res. 2015 Jan 20;48(1):65-72. doi: 10.1021/ar500277z. Epub 2014 Dec 9.
After the discovery of graphene and the development of powerful exfoliation techniques, experimental preparation of two-dimensional (2D) crystals can be expected for any layered material that is known to chemistry. Besides graphene and hexagonal boron nitride (h-BN), transition metal chalcogenides (TMC) are among the most studied ultrathin materials. In particular, single-layer MoS2, a direct band gap semiconductor with ∼1.9 eV energy gap, is popular in physics and nanoelectronics, because it nicely complements semimetallic graphene and insulating h-BN monolayer as a construction component for flexible 2D electronics and because it was already successfully applied in the laboratory as basis material for transistors and other electronic and optoelectronic devices. Two-dimensional crystals are subject to significant quantum confinement: compared with their parent layered 3D material, they show different structural, electronic, and optical properties, such as spontaneous rippling as free-standing monolayer, significant changes of the electronic band structure, giant spin-orbit splitting, and enhanced photoluminescence. Most of those properties are intrinsic for the monolayer and already absent for two-layer stacks of the same 2D crystal. For example, single-layer MoS2 is a direct band gap semiconductor with spin-orbit splitting of 150 meV in the valence band, while the bilayer of the same material is an indirect band gap semiconductor without observable spin-orbit splitting. All these properties have been observed experimentally and are in excellent agreement with calculations based on density-functional theory. This Account reports theoretical studies of a subgroup of transition metal dichalcogenides with the composition MX2, with M = Mo, or W and X = Se or S, also referred to as "MoWSeS materials". Results on the electronic structure, quantum confinement, spin-orbit coupling, spontaneous monolayer rippling, and change of electronic properties in the presence of an external electric field are reported. While all materials of the MoWSeS family share the same qualitative properties, their individual values can differ strongly, for example, the spin-orbit splitting in WSe2 reaches the value of 428 meV, nearly three times that of MoS2. Further, we discuss the effect of strain on the electronic properties (straintronics). While MoWSeS single layers are very robust against external electric fields, bilayers show a linear reduction of the band gap, even reaching a semiconductor-metal phase transition, and an increase of the spin-orbit splitting from zero to the monolayer value at rather small fields. Strain is yet another possibility to control the band gap in a linear way, and MoWSeS monolayers become metallic at strain values of ∼10%. The density-functional based tight-binding model is a useful tool to investigate the electronic and structural properties, including electron conductance, of large MoS2 structures, which show spontaneous rippling in finite-temperature molecular dynamics simulations. Structural defects in MoS2 result in anisotropy of the electric conductivity. Finally, DFT predictions on the properties of noble metal dichalcogenides are presented. Most strikingly, 1T PdS2 is an indirect band gap semiconductor in its monolayer form but becomes metallic as a bilayer.
在发现石墨烯和开发强大的剥离技术之后,人们有望为所有已知的层状材料制备二维(2D)晶体。除了石墨烯和六方氮化硼(h-BN)之外,过渡金属硫属化物(TMC)也是研究最多的超薄材料之一。特别是,单层 MoS2 是一种具有约 1.9eV 能隙的直接带隙半导体,在物理学和纳米电子学中很受欢迎,因为它很好地补充了半金属石墨烯和绝缘 h-BN 单层,作为柔性 2D 电子的构建组件,并且已经成功地在实验室中用作晶体管和其他电子和光电设备的基础材料。二维晶体受到显著的量子限制:与它们的母体层状 3D 材料相比,它们表现出不同的结构、电子和光学性质,例如自由-standing 单层的自发波纹、电子能带结构的显著变化、巨大的自旋轨道分裂和增强的光致发光。这些性质中的大多数是单层的固有性质,对于相同 2D 晶体的两层堆叠已经不存在。例如,单层 MoS2 是一种具有 150meV 价带自旋轨道分裂的直接带隙半导体,而相同材料的双层则是一种没有可观察到的自旋轨道分裂的间接带隙半导体。所有这些性质都已经通过实验观察到,并与基于密度泛函理论的计算非常吻合。本报告报道了具有组成 MX2 的过渡金属二硫属化物的一个子组的理论研究,其中 M = Mo 或 W,X = Se 或 S,也称为“MoWSeS 材料”。报告了电子结构、量子限制、自旋轨道耦合、自发单层波纹以及在外电场存在下电子性质变化的结果。虽然 MoWSeS 族的所有材料都具有相同的定性性质,但它们的个体值可能差异很大,例如,WSe2 的自旋轨道分裂达到 428meV,几乎是 MoS2 的三倍。此外,我们讨论了应变对电子性质的影响(应变电子学)。虽然 MoWSeS 单层对外部电场非常稳定,但双层显示出带隙的线性减小,甚至在相当小的电场下达到半导体-金属相变,并且自旋轨道分裂从零增加到单层值。应变是另一种以线性方式控制带隙的可能性,并且 MoWSeS 单层在应变值约为 10%时变为金属。基于密度泛函的紧束缚模型是研究包括电子输运在内的大 MoS2 结构电子和结构性质的有用工具,这些结构在有限温度分子动力学模拟中显示出自发波纹。MoS2 中的结构缺陷导致电导率各向异性。最后,提出了对贵金属二硫属化物性质的 DFT 预测。最引人注目的是,1T PdS2 在其单层形式中是间接带隙半导体,但在双层形式中变为金属。