Suppr超能文献

一种基于团注追踪的新算法在计算机断层扫描血管造影术中预测患者特异性动脉峰值强化时间的评估

Evaluation of A New Bolus Tracking-Based Algorithm for Predicting A Patient-Specific Time of Arterial Peak Enhancement in Computed Tomography Angiography.

作者信息

Korporaal Johannes G, Bischoff Bernhard, Arnoldi Elisabeth, Sommer Wieland H, Flohr Thomas G, Schmidt Bernhard

机构信息

From the *Imaging and Therapy Division, Computed Tomography, Siemens AG Healthcare Sector, Forchheim; †Institute for Clinical Radiology, Ludwig-Maximilians University Hospital Munich, Munich; and ‡Department of Diagnostic Radiology, Eberhard-Karls-Universität Tübingen, Tübingen; and §Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Invest Radiol. 2015 Aug;50(8):531-8. doi: 10.1097/RLI.0000000000000160.

Abstract

OBJECTIVES

The aim of this study was to evaluate the systematic and random errors of a new bolus tracking-based algorithm that predicts a patient-specific time of peak arterial enhancement and compare its performance with a best-case scenario for the current bolus tracking technique.

MATERIALS AND METHODS

All local institutional review boards approved this retrospective study, in which the test bolus signals of cardiac computed tomography angiographies of 72 patients (46 men; median age, 62 years [range, 31-81 years]) were used to simulate contrast enhancement curves for a multitude of injection protocols with iodine delivery rates (IDRs) varying between 0.5 and 2.5 gI/s, injection durations between 4 and 30 seconds, and tube voltages of 100 and 120 kV. From these simulated curves, bolus tracking signals with statistical errors of 4 Hounsfield units (HU) (standard deviation) were derived with trigger values of 100 and 150 HU at 100 and 120 kV, respectively. The new algorithm then matched the actual bolus tracking signal with a database of expected enhancement curves for that particular injection protocol, taking into account population-averaged blood circulation characteristics with variations in patient weight and cardiac output. Posttrigger delays (PTDs) were calculated as the time difference between the last bolus tracking point and the time of peak enhancement. The systematic and random errors between the predicted and true PTDs were assessed and compared with a best-case scenario for the current bolus tracking method.

RESULTS

With the current bolus tracking technique, interpatient variations decrease with higher IDRs and earlier triggering (lower tube voltage and/or lower trigger value), and the true PTDs increase linearly with injection duration. Compared with the current bolus tracking method, the systematic and random errors of the algorithm-predicted PTDs are smaller, do not depend on the IDR, and are predictable over a large range of total iodine doses. The median difference between the true and algorithm-predicted PTD is less than ±1 second for all IDRs and injection durations, and the algorithm was able to predict patient-specific PTDs within ±2 seconds from the true PTD in more than 90% of patients for almost all injection protocols.

CONCLUSIONS

The new algorithm can robustly predict a patient-specific time of arterial peak enhancement and is better than a best-case scenario for the current bolus tracking technique because interpatient variations are taken into account. It offers a new framework for scan timing optimization and can potentially be used for personalized scan timing in real time.

摘要

目的

本研究旨在评估一种基于团注追踪的新算法的系统误差和随机误差,该算法可预测患者特异性动脉强化峰值时间,并将其性能与当前团注追踪技术的最佳情况进行比较。

材料与方法

所有当地机构审查委员会均批准了这项回顾性研究,其中使用了72例患者(46例男性;中位年龄62岁[范围31 - 81岁])的心脏计算机断层血管造影的测试团注信号,来模拟多种注射方案的对比剂增强曲线,碘输送速率(IDR)在0.5至2.5 gI/s之间变化,注射持续时间在4至30秒之间,管电压为100和120 kV。从这些模拟曲线中,分别在100 kV和120 kV时,以100和150 HU的触发值导出统计误差为4 Hounsfield单位(HU)(标准差)的团注追踪信号。然后,新算法将实际团注追踪信号与该特定注射方案的预期增强曲线数据库进行匹配,同时考虑患者体重和心输出量变化的总体平均血液循环特征。触发后延迟(PTD)计算为最后一个团注追踪点与增强峰值时间之间的时间差。评估预测的和真实的PTD之间的系统误差和随机误差,并与当前团注追踪方法的最佳情况进行比较。

结果

对于当前团注追踪技术,患者间差异随着更高的IDR和更早的触发(更低的管电压和/或更低的触发值)而减小,并且真实的PTD随着注射持续时间线性增加。与当前团注追踪方法相比,算法预测的PTD的系统误差和随机误差更小,不依赖于IDR,并且在大范围的总碘剂量内是可预测的。对于所有IDR和注射持续时间,真实的和算法预测的PTD之间的中位差异小于±1秒,并且对于几乎所有注射方案,在超过90%的患者中,该算法能够在距真实PTD的±2秒内预测患者特异性PTD。

结论

新算法能够可靠地预测患者特异性动脉峰值增强时间,并且优于当前团注追踪技术的最佳情况,因为考虑了患者间差异。它为扫描时间优化提供了一个新框架,并有可能用于实时个性化扫描时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验