Le Cabec Adeline, Tang Nancy, Tafforeau Paul
ESRF-The European Synchrotron, 71, avenue des Martyrs, CS 40220, F-38043 Grenoble, Cédex 9, France; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, United States of America; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, United States of America; Department of Preventive Medicine, Exposure Biology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America.
PLoS One. 2015 Apr 22;10(4):e0123019. doi: 10.1371/journal.pone.0123019. eCollection 2015.
Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine) and matching of stress patterns (internal accentuated lines and hypoplasias) are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands). Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ) were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong's algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual's dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were found to form over a rather surprisingly long time (> 4.5 years). This approach provides tools for maximizing the recovery of developmental information in teeth, especially in the most difficult cases.
牙齿长期生长线(牙釉质中的芮氏线和牙本质中的安德烈森线)的量化以及应力模式(内部强化线和发育不全)的匹配,被用于确定幼年化石人类的牙冠形成时间和死亡年龄。它们产生了用于推断生活史的年表。同步加速器虚拟组织学已被证明是传统侵入性方法的一种非破坏性替代方法。然而,化石牙齿有时保存不佳或无法实际获取,从而妨碍了对增量线(釉面横纹和牙根周带)外部表现的观察。在此,我们提出一种将同步加速器虚拟组织学与牙齿表面和内部界面的高质量三维渲染相结合的新方法。我们用17颗人类永久化石牙齿展示了这种方法。通过捕捉结构界面处的相衬条纹,对牙釉质外表面和釉牙本质界(EDJ)进行了分割。使用Phong算法和定向彩色光的组合来渲染三维模型,以增强表面地形和组织密度细微变化的模式。该过程揭示了整个牙冠表面(包括未萌出的牙齿)的釉面横纹和线性牙釉质发育不全。使用这种方法,当虚拟组织学不足时,EDJ处高度详细的应力模式可使个体牙列内的牙齿精确匹配。我们强调,在分辨率不足的情况下使用X射线显微断层扫描成像时,埋藏学改变的牙釉质在特定情况下可能会产生釉面横纹的人为细分。这可能会使发育时间的评估复杂化,不过通过并行仔细分析外部和内部结构可以避免这种情况。我们还给出了两颗来自南非南方古猿的未萌出犬齿的新牙冠形成时间,发现它们的形成时间相当长(超过4.5年)。这种方法提供了工具,可最大限度地从牙齿中恢复发育信息,尤其是在最困难的情况下。