Laboratory for Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.
Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lau-sanne, Station 17, CH-1015 Lausanne, Switzerland.
ACS Appl Mater Interfaces. 2015 May 13;7(18):9736-43. doi: 10.1021/acsami.5b01561. Epub 2015 May 1.
A key factor in engineering integrated optical devices such as electro-optic switches or waveguides is the patterning of thin films into specific geometries. In particular for functional oxides, etching processes are usually developed to a much lower extent than for silicon or silicon dioxide; therefore, selective area deposition techniques are of high interest for these materials. We report the selective area deposition of titanium dioxide using titanium isopropoxide and water in a high-vacuum chemical vapor deposition (HV-CVD) process at a substrate temperature of 225 °C. Here—contrary to conventional thermal CVD processes—only hydrolysis of the precursor on the surface drives the film growth as the thermal energy is not sufficient to thermally decompose the precursor. Local modification of the substrate surface energy by perfluoroalkylsilanization leads to a reduced surface residence time of the precursors and, consequently, to lower reaction rate and a prolonged incubation period before nucleation occurs, hence, enabling selective area growth. We discuss the dependence of the incubation time and the selectivity of the deposition process on the presence of the perfluoroalkylsilanization layer and on the precursor impinging rates—with selectivity, we refer to the difference of desired material deposition, before nucleation occurs in the undesired regions. The highest measured selectivity reached (99 ± 5) nm, a factor of 3 superior than previously reported in an atomic layer deposition process using the same chemistry. Furthermore, resolution of the obtained patterns will be discussed and illustrated.
在工程集成光学器件(如电光开关或波导)中,一个关键因素是将薄膜图案化为特定的几何形状。特别是对于功能氧化物,刻蚀工艺的发展通常远不如硅或二氧化硅成熟;因此,对于这些材料,选择性区域沉积技术具有很高的兴趣。我们报告了在 225°C 的基底温度下,使用异丙醇钛和水在高真空化学气相沉积(HV-CVD)工艺中选择性区域沉积二氧化钛。在这里——与传统的热 CVD 工艺相反——只有在表面上发生前驱体的水解才能驱动薄膜生长,因为热能不足以使前驱体热分解。通过全氟烷基硅烷化对基底表面能进行局部修饰,导致前驱体在表面上的停留时间缩短,从而降低反应速率,并在成核前延长了潜伏期,从而实现了选择性区域生长。我们讨论了孵育时间和沉积过程选择性对全氟烷基硅烷化层存在以及前驱体撞击率的依赖性——我们将选择性定义为在未发生成核的不期望区域中所需材料沉积的差异。所测量的最高选择性达到(99±5)nm,比以前使用相同化学物质的原子层沉积工艺中报道的选择性高 3 倍。此外,还将讨论并说明获得的图案的分辨率。