Tenenbaum Elena, Ben-Dov Nadav, Segal Ester
†Department of Biotechnology and Food Engineering and ‡The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel.
Langmuir. 2015 May 12;31(18):5244-51. doi: 10.1021/acs.langmuir.5b00935. Epub 2015 May 4.
The importance of cell membranes in biological systems has prompted the development of artificial lipid bilayers, which can mimic the cellular membrane structure. Supported lipid bilayers (SLBs) have emerged as a promising avenue for studying basic membrane processes and for possible biotechnological applications. Conventional methods for SLB formation involve the spreading of lipid vesicles on hydrophilic solid supports. Herein, a facile approach for the construction of tethered SLB within an oxidized porous Si (pSiO2) nanostructure, avoiding liposome preparation, is presented. We employ a two-step lipid self-assembly process, in which a first lipid layer is tethered to the pore walls resulting in a highly stable monolayer. A subsequent solvent exchange step induces the self-assembly of the unbound lipids into a robust SLB. Formation of pSiO2-SLB is confirmed by fluorescence resonance energy transfer (FRET), and the properties of the confined SLB are characterized by environment-sensitive fluorophores. The unique optical properties of the pSiO2 support are employed to monitor in real time the partitioning of a model amphiphilic molecule within the SLB via reflective interferometric Fourier transform spectroscopy (RIFTS) method. These self-reporting SLB platforms provide a highly generic approach for bottom-up construction of complex lipid architectures for performing biological assays at the micro- and nanoscale.
细胞膜在生物系统中的重要性促使了人工脂质双层的发展,其能够模拟细胞膜结构。支撑脂质双层(SLBs)已成为研究基本膜过程以及可能的生物技术应用的一条有前景的途径。传统的SLB形成方法包括脂质囊泡在亲水性固体支持物上的铺展。在此,提出了一种在氧化多孔硅(pSiO2)纳米结构内构建 tethered SLB的简便方法,避免了脂质体制备。我们采用两步脂质自组装过程,其中第一脂质层 tethered 到孔壁上,形成高度稳定的单层。随后的溶剂交换步骤诱导未结合的脂质自组装成坚固的SLB。通过荧光共振能量转移(FRET)确认了pSiO2-SLB的形成,并通过对环境敏感的荧光团对受限SLB的性质进行了表征。利用pSiO2支持物的独特光学性质,通过反射干涉傅里叶变换光谱(RIFTS)方法实时监测模型两亲分子在SLB内的分配。这些自报告SLB平台为自下而上构建复杂脂质结构以在微米和纳米尺度上进行生物测定提供了一种高度通用的方法。