Suppr超能文献

化学结构、物理性质和结构设计相互作用,作为调节介孔中黑色素性质的工具。

The interplay of chemical structure, physical properties, and structural design as a tool to modulate the properties of melanins within mesopores.

机构信息

PoroSiLab, Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy.

Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy.

出版信息

Sci Rep. 2022 Jul 6;12(1):11436. doi: 10.1038/s41598-022-14347-y.

Abstract

The design of modern devices that can fulfil the requirements for sustainability and renewable energy applications calls for both new materials and a better understanding of the mixing of existing materials. Among those, surely organic-inorganic hybrids are gaining increasing attention due to the wide possibility to tailor their properties by accurate structural design and materials choice. In this work, we'll describe the tight interplay between porous Si and two melanic polymers permeating the pores. Melanins are a class of biopolymers, known to cause pigmentation in many living species, that shows very interesting potential applications in a wide variety of fields. Given the complexity of the polymerization process beyond the formation and structure, the full understanding of the melanins' properties remains a challenging task. In this study, the use of a melanin/porous Si hybrid as a tool to characterize the polymer's properties within mesopores gives new insights into the conduction mechanisms of melanins. We demonstrate the dramatic effect induced on these mechanisms in a confined environment by the presence of a thick interface. In previous studies, we already showed that the interactions at the interface between porous Si and eumelanin play a key role in determining the final properties of composite materials. Here, thanks to a careful monitoring of the photoconductivity properties of porous Si filled with melanins obtained by ammonia-induced solid-state polymerization (AISSP) of 5,6-dihydroxyindole (DHI) or 1,8-dihydroxynaphthalene (DHN), we investigate the effect of wet, dry, and vacuum cycles of storage from the freshly prepared samples to months-old samples. A computational study on the mobility of water molecules within a melanin polymer is also presented to complete the understanding of the experimental data. Our results demonstrate that: (a) the hydration-dependent behavior of melanins is recovered in large pores (≈ 60 nm diameter) while is almost absent in thinner pores (≈ 20 nm diameter); (b) DHN-melanin materials can generate higher photocurrents and proved to be stable for several weeks and more sensitive to the wet/dry variations.

摘要

用于可持续性和可再生能源应用的现代设备的设计需要新材料和对现有材料混合的更好理解。在这些材料中,有机-无机杂化材料由于通过精确的结构设计和材料选择来调整其性能的广泛可能性而受到越来越多的关注。在这项工作中,我们将描述多孔硅和两种渗透孔的黑色素聚合物之间的紧密相互作用。黑色素是一类生物聚合物,已知在许多生物物种中引起色素沉着,在各种领域具有非常有趣的潜在应用。鉴于聚合过程的复杂性超出了形成和结构,对黑色素性质的充分理解仍然是一项具有挑战性的任务。在这项研究中,使用黑色素/多孔硅杂化作为工具来表征聚合物在介孔中的性质,为黑色素的传导机制提供了新的见解。我们证明了在存在厚界面的受限环境中,这些机制会产生巨大的影响。在以前的研究中,我们已经表明,多孔硅与真黑色素之间的界面相互作用在确定复合材料的最终性质方面起着关键作用。在这里,通过仔细监测用氨诱导的固态聚合(AISSP)合成的 5,6-二羟基吲哚(DHI)或 1,8-二羟基萘(DHN)合成的黑色素填充多孔硅的光电导性能,我们研究了从新鲜制备的样品到几个月的样品的湿,干和真空循环储存的影响。还提出了黑色素聚合物中水分子迁移率的计算研究,以完善对实验数据的理解。我们的结果表明:(a)在较大的孔(≈60nm 直径)中恢复了黑色素的水合依赖性行为,而在较薄的孔(≈20nm 直径)中几乎不存在;(b)DHN-黑色素材料可以产生更高的光电流,并且被证明可以稳定数周以上,并且对湿/干变化更敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db66/9259623/336d9c4f2c40/41598_2022_14347_Fig1_HTML.jpg

相似文献

2
4
Modeling Fungal Melanin Buildup: Biomimetic Polymerization of 1,8-Dihydroxynaphthalene Mapped by Mass Spectrometry.
Chemistry. 2017 Jun 12;23(33):8092-8098. doi: 10.1002/chem.201701951. Epub 2017 May 29.
5
Synthetic Porous Melanin.
J Am Chem Soc. 2021 Mar 3;143(8):3094-3103. doi: 10.1021/jacs.0c10465. Epub 2021 Feb 18.
6
Towards eumelanin@zeolite hybrids: pore-size-controlled 5,6-dihydroxyindole polymerization.
Chemistry. 2014 Feb 3;20(6):1597-601. doi: 10.1002/chem.201303682. Epub 2014 Jan 8.
8
Degree of polymerization of 5,6-dihydroxyindole-derived eumelanin from chemical degradation study.
Pigment Cell Melanoma Res. 2014 Jul;27(4):664-7. doi: 10.1111/pcmr.12254. Epub 2014 May 12.
10
Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design.
Angew Chem Int Ed Engl. 2020 Jul 6;59(28):11196-11205. doi: 10.1002/anie.201914276. Epub 2020 Mar 18.

引用本文的文献

1
Photochemical Pathways and Light-Enhanced Radical Scavenging Activity of 1,8-Dihydroxynaphthalene Allomelanin.
J Am Chem Soc. 2025 Mar 19;147(11):10031-10043. doi: 10.1021/jacs.5c01855. Epub 2025 Mar 7.
2
3
Bioactive Composite Methacrylated Gellan Gum for 3D-Printed Bone Tissue-Engineered Scaffolds.
Nanomaterials (Basel). 2023 Feb 19;13(4):772. doi: 10.3390/nano13040772.

本文引用的文献

1
Dihydroxynaphthalene-Based Allomelanins: A Source of Inspiration for Innovative Technological Materials.
ACS Omega. 2022 Apr 27;7(18):15308-15314. doi: 10.1021/acsomega.2c00641. eCollection 2022 May 10.
2
Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship.
Front Oncol. 2022 Mar 14;12:842496. doi: 10.3389/fonc.2022.842496. eCollection 2022.
3
Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications.
ACS Cent Sci. 2020 Nov 25;6(11):1916-1937. doi: 10.1021/acscentsci.0c01046. Epub 2020 Oct 21.
4
Mesopore Formation and Silicon Surface Nanostructuration by Metal-Assisted Chemical Etching With Silver Nanoparticles.
Front Chem. 2020 Jul 30;8:658. doi: 10.3389/fchem.2020.00658. eCollection 2020.
5
Synthetic mycomelanin thin films as emergent bio-inspired interfaces controlling the fate of embryonic stem cells.
J Mater Chem B. 2020 May 28;8(20):4412-4418. doi: 10.1039/d0tb00623h. Epub 2020 May 6.
9
Decoration of Porous Silicon with Gold Nanoparticles via Layer-by-Layer Nanoassembly for Interferometric and Hybrid Photonic/Plasmonic (Bio)sensing.
ACS Appl Mater Interfaces. 2019 Nov 20;11(46):43731-43740. doi: 10.1021/acsami.9b15737. Epub 2019 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验