PoroSiLab, Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy.
Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042, Monserrato (Ca), Italy.
Sci Rep. 2022 Jul 6;12(1):11436. doi: 10.1038/s41598-022-14347-y.
The design of modern devices that can fulfil the requirements for sustainability and renewable energy applications calls for both new materials and a better understanding of the mixing of existing materials. Among those, surely organic-inorganic hybrids are gaining increasing attention due to the wide possibility to tailor their properties by accurate structural design and materials choice. In this work, we'll describe the tight interplay between porous Si and two melanic polymers permeating the pores. Melanins are a class of biopolymers, known to cause pigmentation in many living species, that shows very interesting potential applications in a wide variety of fields. Given the complexity of the polymerization process beyond the formation and structure, the full understanding of the melanins' properties remains a challenging task. In this study, the use of a melanin/porous Si hybrid as a tool to characterize the polymer's properties within mesopores gives new insights into the conduction mechanisms of melanins. We demonstrate the dramatic effect induced on these mechanisms in a confined environment by the presence of a thick interface. In previous studies, we already showed that the interactions at the interface between porous Si and eumelanin play a key role in determining the final properties of composite materials. Here, thanks to a careful monitoring of the photoconductivity properties of porous Si filled with melanins obtained by ammonia-induced solid-state polymerization (AISSP) of 5,6-dihydroxyindole (DHI) or 1,8-dihydroxynaphthalene (DHN), we investigate the effect of wet, dry, and vacuum cycles of storage from the freshly prepared samples to months-old samples. A computational study on the mobility of water molecules within a melanin polymer is also presented to complete the understanding of the experimental data. Our results demonstrate that: (a) the hydration-dependent behavior of melanins is recovered in large pores (≈ 60 nm diameter) while is almost absent in thinner pores (≈ 20 nm diameter); (b) DHN-melanin materials can generate higher photocurrents and proved to be stable for several weeks and more sensitive to the wet/dry variations.
用于可持续性和可再生能源应用的现代设备的设计需要新材料和对现有材料混合的更好理解。在这些材料中,有机-无机杂化材料由于通过精确的结构设计和材料选择来调整其性能的广泛可能性而受到越来越多的关注。在这项工作中,我们将描述多孔硅和两种渗透孔的黑色素聚合物之间的紧密相互作用。黑色素是一类生物聚合物,已知在许多生物物种中引起色素沉着,在各种领域具有非常有趣的潜在应用。鉴于聚合过程的复杂性超出了形成和结构,对黑色素性质的充分理解仍然是一项具有挑战性的任务。在这项研究中,使用黑色素/多孔硅杂化作为工具来表征聚合物在介孔中的性质,为黑色素的传导机制提供了新的见解。我们证明了在存在厚界面的受限环境中,这些机制会产生巨大的影响。在以前的研究中,我们已经表明,多孔硅与真黑色素之间的界面相互作用在确定复合材料的最终性质方面起着关键作用。在这里,通过仔细监测用氨诱导的固态聚合(AISSP)合成的 5,6-二羟基吲哚(DHI)或 1,8-二羟基萘(DHN)合成的黑色素填充多孔硅的光电导性能,我们研究了从新鲜制备的样品到几个月的样品的湿,干和真空循环储存的影响。还提出了黑色素聚合物中水分子迁移率的计算研究,以完善对实验数据的理解。我们的结果表明:(a)在较大的孔(≈60nm 直径)中恢复了黑色素的水合依赖性行为,而在较薄的孔(≈20nm 直径)中几乎不存在;(b)DHN-黑色素材料可以产生更高的光电流,并且被证明可以稳定数周以上,并且对湿/干变化更敏感。