Suppr超能文献

心磷脂对膜形态的影响:一项朗缪尔单分子层研究。

Effects of cardiolipin on membrane morphology: a Langmuir monolayer study.

作者信息

Phan Minh Dinh, Shin Kwanwoo

机构信息

Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Korea.

Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Korea.

出版信息

Biophys J. 2015 Apr 21;108(8):1977-86. doi: 10.1016/j.bpj.2015.03.026.

Abstract

Cardiolipin (CL) is a complex phospholipid that is specifically found in mitochondria. Owing to the association of the CL levels with mitochondrial physiopathology such as in Parkinson's disease, we study the molecular effect of CL on membrane organization using model Langmuir monolayer, fluorescence microscopy, and x-ray reflectivity. We find that the liquid-expanded phase in membranes increases with increasing CL concentration, indicating an increase in the elasticity of the mixed membrane. The Gibbs excess free energy of mixing indicates that the binary monolayer composed of CL and DPPC is most thermodynamically stable at ΦCL = 10 mol%, and the stability is enhanced when the surface pressure is increased. Additionally, when ΦCL is small, the expansion of the membrane with increasing CL content was slower at higher surface pressure. These abnormal results are indicative of a folding structure being present before a collapsing structure, which was confirmed by using fluorescence microscopy and was characterized by using x-ray reflectivity with the electron density profile along the membrane's surface normal.

摘要

心磷脂(CL)是一种在 mitochondria 中特有的复杂磷脂。由于 CL 水平与线粒体生理病理学相关联,如在帕金森病中,我们使用模型朗缪尔单层、荧光显微镜和 X 射线反射率研究了 CL 对膜组织的分子效应。我们发现膜中的液晶扩展相随着 CL 浓度的增加而增加,这表明混合膜的弹性增加。混合的吉布斯过剩自由能表明,由 CL 和 DPPC 组成的二元单层在 ΦCL = 10 mol%时在热力学上最稳定,并且当表面压力增加时稳定性增强。此外,当 ΦCL 较小时,在较高表面压力下,随着 CL 含量增加膜的膨胀较慢。这些异常结果表明在塌陷结构之前存在折叠结构,这通过荧光显微镜得到证实,并通过使用沿膜表面法线的电子密度分布的 X 射线反射率进行表征。

相似文献

1
Effects of cardiolipin on membrane morphology: a Langmuir monolayer study.
Biophys J. 2015 Apr 21;108(8):1977-86. doi: 10.1016/j.bpj.2015.03.026.
2
Cytochrome c Complexes with Cardiolipin Monolayer Formed under Different Surface Pressure.
Langmuir. 2015 Nov 17;31(45):12426-36. doi: 10.1021/acs.langmuir.5b03155. Epub 2015 Nov 5.
3
Specific adsorption of cytochrome C on cardiolipin-glycerophospholipid monolayers and bilayers.
Langmuir. 2007 May 8;23(10):5651-6. doi: 10.1021/la0634241. Epub 2007 Apr 10.
4
The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes.
Biochim Biophys Acta. 2009 Oct;1788(10):2069-79. doi: 10.1016/j.bbamem.2009.03.014. Epub 2009 Mar 26.
5
Thermodynamic and mechanical properties of model mitochondrial membranes.
Biochim Biophys Acta. 2004 May 27;1663(1-2):82-8. doi: 10.1016/j.bbamem.2004.02.002.
6
Lipid packing variations induced by pH in cardiolipin-containing bilayers: the driving force for the cristae-like shape instability.
Biochim Biophys Acta. 2011 Nov;1808(11):2724-33. doi: 10.1016/j.bbamem.2011.07.013. Epub 2011 Jul 22.
7
Cytochrome C interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation.
Biophys J. 2006 Jun 1;90(11):4093-103. doi: 10.1529/biophysj.105.080150. Epub 2006 Mar 24.
8
Cholesterol and Cardiolipin Importance in Local Anesthetics-Membrane Interactions: The Langmuir Monolayer Study.
J Membr Biol. 2019 Feb;252(1):31-39. doi: 10.1007/s00232-018-0055-6. Epub 2018 Nov 30.
9
Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes.
Biochim Biophys Acta Biomembr. 2017 Feb;1859(2):257-267. doi: 10.1016/j.bbamem.2016.11.012. Epub 2016 Nov 24.
10
Cardiolipin effects on membrane structure and dynamics.
Langmuir. 2013 Dec 23;29(51):15878-87. doi: 10.1021/la402669z. Epub 2013 Sep 10.

引用本文的文献

1
Polyproline-Polyornithine Diblock Copolymers with Inherent Mitochondria Tropism.
Adv Mater. 2025 Feb;37(8):e2411595. doi: 10.1002/adma.202411595. Epub 2025 Jan 10.
2
Physicochemical Characteristics of Model Membranes Composed of Lipids.
Membranes (Basel). 2023 Mar 20;13(3):356. doi: 10.3390/membranes13030356.
3
Mitochondrial membrane models built from native lipid extracts: Interfacial and transport properties.
Front Mol Biosci. 2022 Sep 23;9:910936. doi: 10.3389/fmolb.2022.910936. eCollection 2022.
6
Acylcarnitines at the Membrane Surface: Insertion Parameters for a Mitochondrial Leaflet Model.
Biophys J. 2020 Mar 10;118(5):1032-1043. doi: 10.1016/j.bpj.2020.01.013. Epub 2020 Jan 22.
7
Molecular Dynamics Modeling of the Interaction of Cationic Fluorescent Lipid Peroxidation-Sensitive Probes with the Mitochondrial Membrane.
Dokl Biochem Biophys. 2019 May;486(1):220-223. doi: 10.1134/S1607672919030153. Epub 2019 Jul 31.
8
Cardiolipin-Dependent Properties of Model Mitochondrial Membranes from Molecular Simulations.
Biophys J. 2019 Aug 6;117(3):429-444. doi: 10.1016/j.bpj.2019.06.023. Epub 2019 Jul 2.
9
The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function.
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Jul;1864(7):1039-1052. doi: 10.1016/j.bbalip.2019.03.012. Epub 2019 Apr 2.
10
Cholesterol and Cardiolipin Importance in Local Anesthetics-Membrane Interactions: The Langmuir Monolayer Study.
J Membr Biol. 2019 Feb;252(1):31-39. doi: 10.1007/s00232-018-0055-6. Epub 2018 Nov 30.

本文引用的文献

1
Cardiolipin effects on membrane structure and dynamics.
Langmuir. 2013 Dec 23;29(51):15878-87. doi: 10.1021/la402669z. Epub 2013 Sep 10.
4
Single vesicle observations of the cardiolipin-cytochrome C interaction: induction of membrane morphology changes.
Langmuir. 2011 May 17;27(10):6107-15. doi: 10.1021/la104924c. Epub 2011 Apr 19.
6
The role of cardiolipin in the structural organization of mitochondrial membranes.
Biochim Biophys Acta. 2009 Oct;1788(10):2080-3. doi: 10.1016/j.bbamem.2009.04.019. Epub 2009 May 4.
7
Cardiolipin membrane domains in prokaryotes and eukaryotes.
Biochim Biophys Acta. 2009 Oct;1788(10):2084-91. doi: 10.1016/j.bbamem.2009.04.003. Epub 2009 Apr 14.
8
Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease.
Cell Calcium. 2009 Jun;45(6):643-50. doi: 10.1016/j.ceca.2009.03.012. Epub 2009 Apr 15.
9
AFM and FTIR spectroscopy investigation of the inverted hexagonal phase of cardiolipin.
J Phys Chem B. 2009 Mar 19;113(11):3437-44. doi: 10.1021/jp809705d.
10
Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics.
Biophys J. 2008 Nov 15;95(10):4924-33. doi: 10.1529/biophysj.108.136077. Epub 2008 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验