Khalifat Nada, Puff Nicolas, Bonneau Stéphanie, Fournier Jean-Baptiste, Angelova Miglena I
Université Pierre et Marie Curie-Paris 6, INSERM UMR S 893 CDR Saint-Antoine, Paris, France.
Biophys J. 2008 Nov 15;95(10):4924-33. doi: 10.1529/biophysj.108.136077. Epub 2008 Aug 8.
Mitochondria are cell substructures (organelles) critical for cell life, because biological fuel production, the ATP synthesis by oxidative phosphorylation, occurs in them driven by acidity (pH) gradients. Mitochondria play a key role as well in the cell death and in various fatigue and exercise intolerance syndromes. It is clear now that mitochondria present an astonishing variety of inner membrane morphologies, dynamically correlated with their functional state, coupled with the rate of the ATP synthesis, and characteristic for normal as well as for pathological cases. Our work offers some original insights into the factors that determine the dynamical tubular structures of the inner membrane cristae. We show the possibility to induce, by localized proton flow, a macroscopic cristae-like shape remodeling of an only-lipid membrane. We designed a minimal membrane system (GUV) and experimentally showed that the directional modulation of local pH gradient at membrane level of cardiolipin-containing vesicles induces dynamic cristae-like membrane invaginations. We propose a mechanism and theoretical model to explain the observed tubular membrane morphology and suggest the underlying role of cardiolipin. Our results support the hypothesis of localized bioenergetic transduction and contribute to showing the inherent capacity of cristae morphology to become self-maintaining and to optimize the ATP synthesis.
线粒体是对细胞生命至关重要的细胞亚结构(细胞器),因为生物燃料的产生,即通过氧化磷酸化合成三磷酸腺苷(ATP),是在由酸度(pH)梯度驱动的线粒体中发生的。线粒体在细胞死亡以及各种疲劳和运动不耐受综合征中也起着关键作用。现在很清楚,线粒体呈现出惊人多样的内膜形态,这些形态与它们的功能状态动态相关,与ATP合成速率相关,并且在正常和病理情况下都具有特征性。我们的工作为决定内膜嵴动态管状结构的因素提供了一些独到的见解。我们展示了通过局部质子流诱导仅含脂质膜发生宏观嵴状形状重塑的可能性。我们设计了一个最小膜系统(巨型单层囊泡,GUV),并通过实验表明,在含心磷脂囊泡的膜水平上局部pH梯度的定向调节会诱导动态嵴状膜内陷。我们提出了一种机制和理论模型来解释观察到的管状膜形态,并提出心磷脂的潜在作用。我们的结果支持局部生物能量转导的假设,并有助于揭示嵴形态自我维持和优化ATP合成的内在能力。