Suppr超能文献

反相毛细管电色谱中多环芳烃的保留时间预测

Retention-time prediction for polycyclic aromatic compounds in reversed-phase capillary electro-chromatography.

作者信息

Feenstra Peter, Gruber-Wölfler Heidrun, Brunsteiner Michael, Khinast Johannes

机构信息

Institute of Process and Particle Engineering, NAWI Graz, Graz University of Technology, TU Graz, Inffeldgasse 13, 8010, Graz, Austria.

出版信息

J Mol Model. 2015 May;21(5):124. doi: 10.1007/s00894-015-2668-3. Epub 2015 Apr 24.

Abstract

Log Po/w based models are often used for the retention time prediction of reversed phase liquid chromatography. Here, we present the investigation of the applicability of log Po/w based retention time predictions for the separation in capillary electro-chromatography (CEC). A test set of five polycyclic aromatic hydrocarbons was separated using two different stationary phases with three different mobile phases each. The resulting retention times were correlated with the experimental log Po/w values as well as with calculated log Po/w values. The used methods include quantitative structure property relationship (QSPR) models as well as molecular dynamic methods such as the linear interaction energy (LIE) or the Bennett acceptance ratio (BAR). The results indicate that rigorous simulation models are capable of accurately reproducing experimental results and that the electrophoretic mobility of analytes in CEC separations leads to significant deviations in the retention time prediction.

摘要

基于log Po/w的模型常用于反相液相色谱的保留时间预测。在此,我们展示了对基于log Po/w的保留时间预测在毛细管电色谱(CEC)分离中的适用性研究。使用两种不同的固定相,每种固定相与三种不同的流动相组合,对一组包含五种多环芳烃的测试集进行分离。所得保留时间与实验log Po/w值以及计算得到的log Po/w值相关。所使用的方法包括定量结构性质关系(QSPR)模型以及分子动力学方法,如线性相互作用能(LIE)或贝内特接受率(BAR)。结果表明,严格的模拟模型能够准确重现实验结果,并且在CEC分离中分析物的电泳迁移率会导致保留时间预测出现显著偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验