Suppr超能文献

脊椎动物心脏与咽的进化中,新的心脏对应新的头部结构。

A new heart for a new head in vertebrate cardiopharyngeal evolution.

作者信息

Diogo Rui, Kelly Robert G, Christiaen Lionel, Levine Michael, Ziermann Janine M, Molnar Julia L, Noden Drew M, Tzahor Eldad

机构信息

Department of Anatomy, Howard University College of Medicine, Washington DC 20059, USA.

Aix Marseille Université, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille UMR 7288, 13288 Marseille, France.

出版信息

Nature. 2015 Apr 23;520(7548):466-73. doi: 10.1038/nature14435.

Abstract

It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.

摘要

新头部假说提出脊椎动物的头部是神经嵴和颅基板出现后产生的一种进化上的新事物,自该假说发表以来已有30多年了。神经嵴产生头骨及相关结缔组织,而基板产生感觉器官。然而,无论是神经嵴还是基板都不产生头部肌肉,而头部肌肉是复杂的脊椎动物头部的关键组成部分。我们讨论了头部肌肉进化与腔室心脏之间惊人联系的新证据——这两个系统都起源于脊椎动物胚胎心咽区中胚层祖细胞的共同来源。我们考虑了这个区域在非脊椎动物脊索动物中的起源及其在脊椎动物中的进化。

相似文献

1
A new heart for a new head in vertebrate cardiopharyngeal evolution.
Nature. 2015 Apr 23;520(7548):466-73. doi: 10.1038/nature14435.
2
Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates.
Curr Opin Genet Dev. 2015 Jun;32:119-28. doi: 10.1016/j.gde.2015.02.008. Epub 2015 Mar 25.
3
Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin.
Cell Mol Life Sci. 2020 May;77(10):1933-1945. doi: 10.1007/s00018-019-03373-1. Epub 2019 Nov 13.
4
Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells.
J Anat. 2013 Jan;222(1):134-46. doi: 10.1111/j.1469-7580.2012.01541.x. Epub 2012 Jul 11.
7
Do vertebrate neural crest and cranial placodes have a common evolutionary origin?
Bioessays. 2008 Jul;30(7):659-72. doi: 10.1002/bies.20775.
8
Vertebrate head development: segmentation, novelties, and homology.
Theory Biosci. 2005 Nov;124(2):145-63. doi: 10.1007/BF02814481. Epub 2005 Sep 12.
9
Vertebrate cranial evolution: Contributions and conflict from the fossil record.
Evol Dev. 2023 Jan;25(1):119-133. doi: 10.1111/ede.12422. Epub 2022 Oct 29.

引用本文的文献

1
Serine synthesis pathway regulates cardiac differentiation from human pluripotent stem cells.
iScience. 2025 Jun 7;28(7):112843. doi: 10.1016/j.isci.2025.112843. eCollection 2025 Jul 18.
2
Tbx1 plays a critical role in focal adhesion dynamics through paxillin regulation.
Life Sci Alliance. 2025 May 29;8(8). doi: 10.26508/lsa.202403151. Print 2025 Aug.
3
Nkx2.7 is a conserved regulator of craniofacial development.
Nat Commun. 2025 Apr 23;16(1):3802. doi: 10.1038/s41467-025-58821-3.
4
Co-option of neck muscles supported the vertebrate water-to-land transition.
Nat Commun. 2024 Dec 4;15(1):10564. doi: 10.1038/s41467-024-54724-x.
5
Gastruloids are competent to specify both cardiac and skeletal muscle lineages.
Nat Commun. 2024 Nov 23;15(1):10172. doi: 10.1038/s41467-024-54466-w.
6
LPS‑mediated adaptation accelerates ecto‑MSCs differentiation into osteoblasts.
Mol Med Rep. 2024 Dec;30(6). doi: 10.3892/mmr.2024.13365. Epub 2024 Oct 18.
7
Tensile force impairs lip muscle regeneration under the regulation of interleukin-10.
J Cachexia Sarcopenia Muscle. 2024 Dec;15(6):2497-2508. doi: 10.1002/jcsm.13584. Epub 2024 Oct 1.
8
The pericardium forms as a distinct structure during heart formation.
bioRxiv. 2024 Sep 28:2024.09.18.613484. doi: 10.1101/2024.09.18.613484.
9
Cardiac Progenitor Cells of the First and Second Heart Fields.
Adv Exp Med Biol. 2024;1441:103-124. doi: 10.1007/978-3-031-44087-8_5.
10
Human Cardiac Development.
Adv Exp Med Biol. 2024;1441:3-55. doi: 10.1007/978-3-031-44087-8_1.

本文引用的文献

2
An Org-1-Tup transcriptional cascade reveals different types of alary muscles connecting internal organs in Drosophila.
Development. 2014 Oct;141(19):3761-71. doi: 10.1242/dev.111005. Epub 2014 Sep 10.
3
5
Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat.
PLoS One. 2014 May 5;9(5):e95151. doi: 10.1371/journal.pone.0095151. eCollection 2014.
6
7
Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication.
Hum Mol Genet. 2014 Aug 15;23(16):4215-31. doi: 10.1093/hmg/ddu140. Epub 2014 Apr 4.
8
The evolutionary history of vertebrate cranial placodes--I: cell type evolution.
Dev Biol. 2014 May 1;389(1):82-97. doi: 10.1016/j.ydbio.2014.01.017. Epub 2014 Feb 1.
9
NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field.
PLoS Biol. 2013 Dec;11(12):e1001725. doi: 10.1371/journal.pbio.1001725. Epub 2013 Dec 3.
10
Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum.
J Morphol. 2014 Apr;275(4):465-77. doi: 10.1002/jmor.20228. Epub 2013 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验