Suppr超能文献

卡茨细胞轨迹结构放射生物学模型的原理。

The principles of Katz's cellular track structure radiobiological model.

作者信息

Waligórski M P R, Grzanka L, Korcyl M

机构信息

Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków 31-342, Poland The Marie-Skłodowska-Curie Centre of Oncology, Kraków Division, Garncarska 11, Kraków 31-115, Poland

Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków 31-342, Poland.

出版信息

Radiat Prot Dosimetry. 2015 Sep;166(1-4):49-55. doi: 10.1093/rpd/ncv201. Epub 2015 Apr 22.

Abstract

The cellular track structure theory (TST), introduced by Katz in 1968, applies the concept of action cross section as the probability of targets in the radiation detector being activated to elicit the observed endpoint (e.g. cell killing). The ion beam radiation field is specified by the charge Z, speed β (or energy), fluence and linear energy transfer (LET) of the ion, rather than by its total absorbed dose or dose-averaged LET. The detector is represented by radiosensitive elements of size a0 and radiosensitivity D0, its gamma-ray response being represented by c-hit or multi-target expressions rather than by the linear-quadratic formula. Key to TST is the Dδ(r) formula describing the radial distribution of delta-ray dose (RDD) around the ion path. This formula, when folded with the dose response of the detector and radially integrated, yields the 'point target' action cross section value, σPT. The averaged value of the cross section, σ, is obtained by radially integrating the a0-averaged RDD. In the 'track width' regime which may occur at the distal end of the ion's path, the value of σ may considerably exceed its geometrical value, [Formula: see text]. Several scaling principles are applied in TST, resulting in its simple analytic formulation. Multi-target detectors, such as cells, are represented in TST by m, D0, σ0 (the 'saturation value' of the cross section which replaces a0) and κ (a 'detector saturation index'), as the fourth model parameter. With increasing LET of the ion, the two-component formulation of TST allows for successive transition from shouldered survival curves at low LET values to exponential ones at radiobiological effectiveness (RBE) maximum, followed by 'thindown' at the end of the ion track. For a given cell line, having best-fitted the four model parameters (m, D0, σ0 and κ) to an available data set of measured survival curves, TST is able to quantitatively predict cell survival and RBE for this cell line after any other ion irradiation.

摘要

细胞径迹结构理论(TST)由卡茨于1968年提出,该理论应用作用截面的概念,即将辐射探测器中靶标被激活以引发所观察到的终点事件(如细胞杀伤)的概率。离子束辐射场由离子的电荷Z、速度β(或能量)、注量和传能线密度(LET)来确定,而不是由其总吸收剂量或剂量平均LET来确定。探测器由尺寸为a0且具有辐射敏感性D0的辐射敏感元件来表示,其γ射线响应由c击或多靶标表达式来表示,而非由线性二次公式来表示。TST的关键是描述离子径迹周围δ射线剂量(RDD)径向分布的Dδ(r)公式。该公式与探测器的剂量响应进行折叠并进行径向积分后,可得出“点靶标”作用截面值σPT。通过对a0平均的RDD进行径向积分可得到截面的平均值σ。在离子径迹末端可能出现的“径迹宽度”区域,σ值可能会大大超过其几何值,[公式:见原文]。TST应用了若干标度原理,从而得出其简单的解析公式。多靶标探测器,如细胞,在TST中由m、D0、σ0(取代a0的截面“饱和值”)和κ(“探测器饱和指数”)表示,作为第四个模型参数。随着离子LET的增加,TST的双组分公式允许从低LET值时的有坪存活曲线连续过渡到放射生物学效应(RBE)最大值时的指数存活曲线,随后在离子径迹末端出现“变细现象”。对于给定的细胞系,在将四个模型参数(m、D0、σ0和κ)与可用的测量存活曲线数据集进行最佳拟合后,可以预测该细胞系在任何其他离子辐照后的细胞存活情况和RBE。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验