Institut des Sciences Moléculaires d'Orsay, ISMO, University Paris-Sud, CNRS, Orsay, France.
Nanoscale. 2015 May 21;7(19):8843-57. doi: 10.1039/c5nr00968e.
We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc.
我们报告了一项在生理条件下,对自然附着在玻璃基底上的革兰氏阳性 Rhodococcus wratislaviensis 细菌细胞壁上的电荷分布进行体内电动原子力显微镜 (AFM) 研究。本文提出的方法依赖于对 AFM 接近/缩回曲线的详细研究,该曲线给出了针尖和样品之间的相互作用力随距离的变化。除了经典的高度和机械(如刚度)数据外,还证明了局部电特性(如细菌表面电荷)的映射在优于几十纳米的空间分辨率下是可行的。这种创新方法依赖于通过悬臂梁的远离(> 10nm)排斥接触区域的挠度来测量其表面应力:表面应力的变化源于悬臂梁的电表面电荷的修饰(如在经典的电动测量中),这可能源于其在尖端和样品电双层接触期间的充电。与专注于静电直接使用的技术相比,该方法在固/液界面的局部电和电化学测量方面提供了重要的改进,特别是在高摩尔电解质中。因此,它为直接研究涉及众多实际应用和基础问题(如细菌粘附、生物膜形成、微生物燃料电池等)的生物电表面过程开辟了新途径。