†Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States.
Environ Sci Technol. 2015 May 19;49(10):6327-34. doi: 10.1021/es5052777. Epub 2015 May 7.
Production of competitive microalgal biofuels requires development of high volumetric productivity photobioreactors (PBRs) capable of supporting high-density cultures. Maximal biomass density supported by the current PBRs is limited by nonuniform distribution of light as a result of self-shading effects. We recently developed a thin-light-path stacked photobioreactor with integrated slab waveguides that distributed light uniformly across the volume of the PBR. Here, we enhance the performance of the stacked waveguide photobioreactor (SW-PBR) by determining the optimal wavelength and intensity regime of the incident light. This enabled the SW-PBR to support high-density cultures, achieving a carrying capacity of OD730 20. Using a genetically modified algal strain capable of secreting ethylene, we improved ethylene production rates to 937 μg L(-1) h(-1). This represents a 4-fold improvement over a conventional flat-plate PBR. These results demonstrate the advantages of the SW-PBR design and provide the optimal operational parameters to maximize volumetric production.
生产具有竞争力的微藻生物燃料需要开发能够支持高密度培养的高体积生产率光生物反应器(PBR)。当前 PBR 所能支持的最大生物量密度受到自遮蔽效应导致的光不均匀分布的限制。我们最近开发了一种具有集成平板波导的薄光程堆叠式光生物反应器,可在 PBR 体积内均匀分布光。在这里,我们通过确定入射光的最佳波长和强度范围来增强堆叠波导光生物反应器(SW-PBR)的性能。这使得 SW-PBR 能够支持高密度培养,实现 OD730 的承载能力为 20。使用能够分泌乙烯的基因修饰藻株,我们将乙烯的生产速率提高到 937 μg L(-1)h(-1)。这比传统的平板 PBR 提高了 4 倍。这些结果表明了 SW-PBR 设计的优势,并提供了最大化体积生产的最佳操作参数。