Department of Biology, University of North Texas , Denton, TX , USA .
Syst Biol Reprod Med. 2015 Jun;61(3):122-38. doi: 10.3109/19396368.2015.1035817. Epub 2015 Apr 24.
The multi-factorial nature of adverse reproductive effects mediated by endocrine disrupting compounds (or EDCs) makes understanding the mechanistic basis of reproductive dysfunction a highly pertinent area of research. As a consequence, a main motivator for continued research is to integrate 'multi-leveled' complexity (i.e., from genes to phenotype) using mathematical methods capable of encapsulating properties of physiological relevance. In this study, an in silico stoichiometric model of piscine steroidogenesis was augmented with a 'biomass' reaction associating the underlying stoichiometry of steroidogenesis with a reaction representative of gonad growth. The ability of the in silico model to predict perturbed steroidogenesis and subsequent effects on gonad growth was tested by exposing reproductively active male and female fathead minnows (Pimephales promelas) to 88 ng/L of the synthetic estrogen, 17α-ethynylestradiol (EE2). The in silico model was parameterized (or constrained) with experimentally quantified concentrations of selected steroid hormones (using mass spectrometry) and fold changes in gene expression (using RT-qPCR) for selected steroidogenic enzyme genes, in gonads of male and female fish. Once constrained, the optimization framework of flux balance analysis (FBA) was used to calculate an optimal flux through the biomass reaction (analogous to gonad growth) and associated steroidogenic flux distributions required to generate biomass. FBA successfully predicted effects of EE2 exposure on fathead minnow gonad growth (%gonadosomatic index or %GSI) and perturbed production of steroid hormones. Specifically, FBA accurately predicted no effects of exposure on male %GSI and a significant reduction for female %GSI. Furthermore, in silico simulations accurately identified disrupted reaction fluxes catalyzing productions of androgens (in male fish) and progestogens (in female fish), an observation which agreed with in vivo experimentation. The analyses presented is the first-ever to successfully associate underlying flux properties of the steroidogenic network with gonad growth in fish, an approach which can incorporate in silico predictions with toxicological risk assessments.
内分泌干扰化合物 (或 EDCs) 介导的不良生殖效应具有多因素性质,这使得理解生殖功能障碍的机制基础成为一个高度相关的研究领域。因此,继续研究的主要动机是使用能够包含生理相关性属性的数学方法来整合“多层次”复杂性(即从基因到表型)。在这项研究中,鱼类类固醇生成的计算机模拟模型通过与类固醇生成的基础化学计量学相关的“生物量”反应得到了增强,该反应代表了性腺生长。通过暴露于合成雌激素 17α-乙炔基雌二醇 (EE2) 的生殖活跃的雄性和雌性黑头呆鱼 (Pimephales promelas) 来测试计算机模拟模型预测扰动的类固醇生成及其对性腺生长的后续影响的能力。计算机模拟模型使用质谱法测量选定类固醇激素的实验量化浓度和选定类固醇生成酶基因的基因表达变化(使用 RT-qPCR)进行参数化(或约束),用于雄性和雌性鱼类的性腺。一旦进行了约束,通量平衡分析 (FBA) 的优化框架就用于计算通过生物量反应(类似于性腺生长)的最佳通量以及产生生物量所需的相关类固醇生成通量分布。FBA 成功预测了 EE2 暴露对黑头呆鱼性腺生长(性腺体指数或 %GSI)的影响以及类固醇激素产生的扰动。具体来说,FBA 准确预测了 EE2 暴露对雄性 %GSI 没有影响,而对雌性 %GSI 则有显著降低。此外,计算机模拟准确地确定了催化雄激素(在雄性鱼类中)和孕激素(在雌性鱼类中)产生的中断反应通量,这一观察结果与体内实验一致。所提出的分析是首次成功地将类固醇生成网络的潜在通量特性与鱼类的性腺生长相关联,这种方法可以将计算机模拟预测与毒理学风险评估相结合。