Suppr超能文献

采用自动化三步连续提取法结合氢化物发生-原子荧光光谱法测定农业土壤中的砷形态。

Arsenic fractionation in agricultural soil using an automated three-step sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry.

机构信息

Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León, Mexico; Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain.

Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain.

出版信息

Anal Chim Acta. 2015 May 18;874:1-10. doi: 10.1016/j.aca.2015.03.019. Epub 2015 Mar 18.

Abstract

A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 μg L(-1) for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013-0.800, 0.011-0.900 and 0.079-1.400 mg L(-1) for F1, F2, and F3, respectively. The precision of the automated MSFIA-HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 μg L(-1) As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural soil samples from an arsenic-contaminated mining zone to evaluate its extractability. The frequency of analysis of the proposed method was eight times higher than that of the conventional BCR method (6 vs 48 h), and the kinetics of lixiviation were established for each fraction.

摘要

建立了一种基于多进样器流动注射分析(MSFIA)系统与氢化物发生-原子荧光光谱法(HG-AFS)联用的全自动改良三步 BCR 流态连续提取方法,用于从农业土壤中分离砷(As)含量。通过利用偏最小二乘(PLS)设计的多元方法,优化了影响自动系统性能的关键参数。通过与常规 BCR 方法进行比较,对基于流动的改良 BCR 方法进行了验证。因此,在以下三个部分中测定总 As 含量:部分 1(F1),酸可溶或可交换部分;部分 2(F2),可还原部分;部分 3(F3),可氧化部分。F1、F2 和 F3 的检出限(LOD)分别为 4.0、3.4 和 23.6 μg L(-1)。每个部分的分析都获得了较宽的工作浓度范围,即 F1、F2 和 F3 分别为 0.013-0.800、0.011-0.900 和 0.079-1.400 mg L(-1)。自动化 MSFIA-HG-AFS 系统的精密度(以相对标准偏差(RSD)表示),用 200 μg L(-1) As 标准溶液进行评估,F1、F2 和 F3 的 RSD 值分别在 5%至 8%之间。新的改良三步 BCR 流动连续提取方法成功应用于受污染矿区农田土壤中砷的形态分析,以评估其提取率。该方法的分析频率比常规 BCR 方法高八倍(6 小时与 48 小时),并建立了每个部分的浸出动力学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验