Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
J Environ Manage. 2015 Jul 1;157:194-204. doi: 10.1016/j.jenvman.2015.04.013. Epub 2015 Apr 21.
The carbon dioxide (CO2) adsorbent diatomaceous earth (DE) was modified with cetyltrimethylammonium bromide (CTAB) and functionalized with varying levels of tetraethylenepentamine (TEPA). The CO2 absorption at atmospheric pressure was optimized by varying the TEPA-loading level (0-40% (w/w)), operating temperature (40-80 °C) and water vapor concentration (0-16% (v/v)) in a 10% (v/v) CO2 feed stream in helium balance using a full 2(3) factorial design. The TEPA/CTAB-DE adsorbents were characterized by X-ray diffractometry, Fourier transform infrared spectrometry and thermogravimetric analyses. The CO2 adsorption capacity increased as each of these three factors increased. The TEPA loading level-water concentration interaction had a positive influence on the CO2 adsorption while the operating temperature-water concentration interaction was antagonistic. The optimal condition for CO2 adsorption on 40%TEPA/CTAB-DE, evaluated via a factorial design response surface method (RSM), was a temperature of 58-68 °C and a water vapor concentration of 9.5-14% (v/v), with a maximum CO2 adsorption capacity of 149.4 mg g(-1) at 63.5 °C and 12% (v/v) water vapor concentration in the feed. Validation and sensitivity tests revealed that the estimated CO2 adsorption capacity was within ±4% of the experimental values, suggesting that the RSM model was satisfied and acceptable. From three kinetic models (pseudo-first-order, pseudo-second-order model and Avrami's equation), assessed using an error function (Err) and the coefficient of determination (R(2)), Avrami's equation was the most appropriate to describe the kinetics of CO2 adsorption on the 40%TEPA/CTAB-DE adsorbent and suggested that more than one reaction pathway occurred in the CO2 adsorption.
二氧化碳(CO2)吸附剂硅藻土(DE)用十六烷基三甲基溴化铵(CTAB)进行改性,并通过四乙烯五胺(TEPA)的不同负载水平进行功能化。通过改变 TEPA 负载水平(0-40%(w/w))、操作温度(40-80°C)和水蒸气浓度(0-16%(v/v)),在 10%(v/v)CO2进料中优化大气压下的 CO2 吸收氦气平衡中的进料,使用全 2(3)因子设计。通过 X 射线衍射、傅里叶变换红外光谱和热重分析对 TEPA/CTAB-DE 吸附剂进行了表征。CO2 吸附量随着这三个因素的增加而增加。TEPA 负载水平-水浓度相互作用对 CO2 吸附有积极影响,而操作温度-水浓度相互作用则相反。通过因子设计响应面法(RSM)评估,在 40%TEPA/CTAB-DE 上吸附 CO2 的最佳条件为温度 58-68°C 和水蒸气浓度 9.5-14%(v/v),在 63.5°C 和 12%(v/v)水蒸气浓度进料时,最大 CO2 吸附量为 149.4mg g(-1)。验证和敏感性测试表明,估算的 CO2 吸附量与实验值相差±4%,表明 RSM 模型是满意和可接受的。通过误差函数(Err)和决定系数(R(2))评估的三种动力学模型(准一级、准二级模型和 Avrami 方程),Avrami 方程最适合描述 40%TEPA/CTAB-DE 吸附剂上 CO2 吸附的动力学,表明 CO2 吸附过程中发生了不止一种反应途径。