Panagiotopoulos N T, Kalfagiannis N, Vasilopoulos K C, Pliatsikas N, Kassavetis S, Vourlias G, Karakassides M A, Patsalas P
University of Ioannina, Department of Materials Science and Engineering, GR-45110 Ioannina, Greece.
Nanotechnology. 2015 May 22;26(20):205603. doi: 10.1088/0957-4484/26/20/205603. Epub 2015 Apr 27.
Perhaps the simplest method for creating metal nanoparticles on a substrate is by driving their self-assembly with the thermal annealing of a thin metal film. By properly tuning the annealing parameters one hopes to discover a recipe that allows the pre-determined design of the NP arrangement. However, thermal treatment is known for detrimental effects and is not really the manufacturer's route of choice when it comes to large-scale applications. An alternative method is the use of microwave annealing, a method that has never been applied for metal processing, due to the high reflectance of microwave radiation at the surface of a metal. However, in this work we challenge the widely used nanostructuring methods by proving the microwave's annealing ability to produce plasmonic templates, out of extremely thin metal films, by simply using a domestic microwave oven apparatus. We show that this process is generic and independent of the deposition method used for the metal and we further quantify the suitability of these plasmonic templates for use in surface-enhanced Raman scattering applications.
或许在基底上制备金属纳米颗粒最简单的方法是通过对薄金属膜进行热退火来驱动其自组装。通过适当调整退火参数,人们希望找到一种方法,能够预先确定纳米颗粒排列的设计方案。然而,热处理存在有害影响,在大规模应用方面,它并非制造商真正会选择的方法。另一种方法是使用微波退火,由于微波辐射在金属表面具有高反射率,这种方法从未被应用于金属加工。然而,在这项工作中,我们通过证明仅使用家用微波炉设备,微波退火能够从极薄的金属膜中制备等离子体模板,对广泛使用的纳米结构化方法提出了挑战。我们表明这个过程具有通用性,与用于金属的沉积方法无关,并且我们进一步量化了这些等离子体模板在表面增强拉曼散射应用中的适用性。