Khan Matiullah, Xu Junna, Cao Wenbin, Liu Zi-Kui
J Nanosci Nanotechnol. 2014 Sep;14(9):6865-71. doi: 10.1166/jnn.2014.8985.
In this paper, the effects of Mo doping on the geometrical, electronic, optical, and photocatalytic properties of TiO2 have been investigated theoretically and experimentally. The density functional theory based calculations show that Mo doping creates impurity states (Mo 4d) below the conduction band of TiO2 and the Fermi level is pinned inside the conduction band verifying n-type doping nature of the Mo in TiO2, which enhances its visible light absorption. Anatase TiO2 particles with Mo contents of 0.08, 0.1, 0.5, 1.0, 1.5 and, 2.0 at.% were synthesized by hydrothermal method without any post heat treatment for crystallization. Experiment results show that Mo ions have been successfully doped into the TiO2 lattice. The morphology of TiO2 particles is nearly spherical and the grain size is uniformly distributed as about 10 nm. Synthesized sample with 0.1 at.% Mo doping concentration shows the best visible light photocatalytic activity due to the reduced band gap and improved electron-hole pairs separation. However, the photocatalytic activity of the sample with 2.0 at.% Mo is relatively low although its visible light absorption is the best among the samples. The enhanced recombination of electron-hole pairs caused by the excessive Mo doping concentration may account for it.
本文从理论和实验两方面研究了Mo掺杂对TiO₂的几何、电子、光学和光催化性能的影响。基于密度泛函理论的计算表明,Mo掺杂在TiO₂的导带下方产生杂质态(Mo 4d),费米能级钉扎在导带内,证实了Mo在TiO₂中的n型掺杂性质,这增强了其可见光吸收。采用水热法合成了Mo含量为0.08、0.1、0.5、1.0、1.5和2.0 at.%的锐钛矿型TiO₂颗粒,无需任何后续热处理进行结晶。实验结果表明,Mo离子已成功掺杂到TiO₂晶格中。TiO₂颗粒的形态接近球形,晶粒尺寸均匀分布在约10 nm左右。掺杂浓度为0.1 at.%的合成样品由于带隙减小和电子-空穴对分离改善,表现出最佳的可见光光催化活性。然而,Mo含量为2.0 at.%的样品虽然其可见光吸收在样品中最佳,但其光催化活性相对较低。过量的Mo掺杂浓度导致的电子-空穴对复合增强可能是其原因。