Li Yan-Yan, Li Bing-Xuan, Zhang Ge, Zhou Liu-Jiang, Lin Hua, Shen Jin-Ni, Zhang Cheng-Yi, Chen Ling, Wu Li-Ming
†Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
‡University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China.
Inorg Chem. 2015 May 18;54(10):4761-7. doi: 10.1021/acs.inorgchem.5b00189. Epub 2015 Apr 30.
The most advanced UV-vis and IR NLO materials are usually borates and chalcogenides, respectively. But thioborates, especially thio-borometalates, are extremely rare. Here, four new such compounds are discovered by solid state reactions representing 0D structures constructed by isolated BQ3 trigonal planes and discrete MQ3 pyramids with Ba(2+) cations filling among them, centrosymmetric monoclinic P21/c Ba3(BS3)1.5(MS3)0.5 (M = Sb, Bi) 1, 2 with a = 12.9255(9), 12.946(2) Å; b = 21.139(2), 21.170(2)Å; c = 8.4194(6), 8.4207(8) Å; β = 101.739(5), 101.688(7)°; V = 2252.3(3), 2259.9(3) Å(3) and noncentrosymmetric hexagonal P6̅2m Ba3(BQ3)(SbQ3) (Q = S, Se) 3, 4 with a = b = 17.0560(9), 17.720(4) Å; c = 10.9040(9), 11.251(3) Å; V = 2747.1(3), 3060(2) Å(3). 3 exhibits the strongest SHG among thioborates that is about three times that of the benchmark AgGaS2 at 2.05 μm. 1 and 3 also show an interesting structure relationship correlated to the size mismatching of the anionic building units that can be controlled by the experimental loading ratio of B:Sb. Syntheses, structure characterizations, and electronic structures based on the density functional theory calculations are reported.