Suppr超能文献

基于密度泛函理论的遗传算法搜索用于二氧化碳还原的金铜纳米合金电催化剂。

A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO₂ reduction.

作者信息

Lysgaard Steen, Mýrdal Jón S G, Hansen Heine A, Vegge Tejs

机构信息

Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.

出版信息

Phys Chem Chem Phys. 2015 Nov 14;17(42):28270-6. doi: 10.1039/c5cp00298b. Epub 2015 Apr 30.

Abstract

Using a DFT-based genetic algorithm (GA) approach, we have determined the most stable structure and stoichiometry of a 309-atom icosahedral AuCu nanoalloy, for potential use as an electrocatalyst for CO2 reduction. The identified core-shell nano-particle consists of a copper core interspersed with gold atoms having only copper neighbors and a gold surface with a few copper atoms in the terraces. We also present an adsorbate-dependent correction scheme, which enables an accurate determination of adsorption energies using a computationally fast, localized LCAO-basis set. These show that it is possible to use the LCAO mode to obtain a realistic estimate of the molecular chemisorption energy for systems where the computation in normal grid mode is not computationally feasible. These corrections are employed when calculating adsorption energies on the Cu, Au and most stable mixed particles. This shows that the mixed Cu135@Au174 core-shell nanoalloy has a similar adsorption energy, for the most favorable site, as a pure gold nano-particle. Cu, however, has the effect of stabilizing the icosahedral structure because Au particles are easily distorted when adding adsorbates.

摘要

使用基于密度泛函理论(DFT)的遗传算法(GA)方法,我们确定了一种309原子的二十面体AuCu纳米合金的最稳定结构和化学计量比,其有潜力用作二氧化碳还原的电催化剂。所确定的核壳纳米粒子由一个铜核组成,铜核中散布着仅与铜相邻的金原子,以及一个表面有少量铜原子的金表面。我们还提出了一种依赖于吸附质的校正方案,该方案能够使用计算速度快的局域线性组合原子轨道(LCAO)基组准确测定吸附能。这些结果表明,对于在常规网格模式下计算不可行的系统,使用LCAO模式有可能获得分子化学吸附能的实际估计值。在计算铜、金和最稳定混合粒子上的吸附能时采用了这些校正。这表明,对于最有利的位点,混合的Cu135@Au174核壳纳米合金具有与纯金纳米粒子相似的吸附能。然而,铜具有稳定二十面体结构的作用,因为添加吸附质时金粒子容易变形。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验