Suppr超能文献

利用可扩展特征对多元素随机合金进行加速晶体结构预测

Accelerated crystal structure prediction of multi-elements random alloy using expandable features.

作者信息

Jin Taewon, Park Ina, Park Taesu, Park Jaesik, Shim Ji Hoon

机构信息

Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Sci Rep. 2021 Mar 4;11(1):5194. doi: 10.1038/s41598-021-84544-8.

Abstract

Properties of solid-state materials depend on their crystal structures. In solid solution high entropy alloy (HEA), its mechanical properties such as strength and ductility depend on its phase. Therefore, the crystal structure prediction should be preceded to find new functional materials. Recently, the machine learning-based approach has been successfully applied to the prediction of structural phases. However, since about 80% of the data set is used as a training set in machine learning, it is well known that it requires vast cost for preparing a dataset of multi-element alloy as training. In this work, we develop an efficient approach to predicting the multi-element alloys' structural phases without preparing a large scale of the training dataset. We demonstrate that our method trained from binary alloy dataset can be applied to the multi-element alloys' crystal structure prediction by designing a transformation module from raw features to expandable form. Surprisingly, without involving the multi-element alloys in the training process, we obtain an accuracy, 80.56% for the phase of the multi-element alloy and 84.20% accuracy for the phase of HEA. It is comparable with the previous machine learning results. Besides, our approach saves at least three orders of magnitude computational cost for HEA by employing expandable features. We suggest that this accelerated approach can be applied to predicting various structural properties of multi-elements alloys that do not exist in the current structural database.

摘要

固态材料的性质取决于其晶体结构。在固溶体高熵合金(HEA)中,其强度和延展性等力学性能取决于其相。因此,在寻找新型功能材料之前应先进行晶体结构预测。最近,基于机器学习的方法已成功应用于结构相的预测。然而,由于在机器学习中约80%的数据集用作训练集,众所周知,准备多元素合金的训练数据集需要巨大成本。在这项工作中,我们开发了一种无需准备大规模训练数据集即可预测多元素合金结构相的有效方法。我们通过设计一个从原始特征到可扩展形式的转换模块,证明了从二元合金数据集训练的方法可应用于多元素合金的晶体结构预测。令人惊讶的是,在训练过程中不涉及多元素合金,我们获得了多元素合金相的80.56%的准确率和HEA相的84.20%的准确率。这与之前的机器学习结果相当。此外,我们的方法通过采用可扩展特征,为HEA节省了至少三个数量级的计算成本。我们建议这种加速方法可应用于预测当前结构数据库中不存在的多元素合金的各种结构性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d35a/7933338/4b9cee2e2875/41598_2021_84544_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验