Suppr超能文献

利用电力进行分离。毛细管区带电泳、等电聚焦、场流分级、分流薄池连续分离及其他技术。

Harnessing electrical forces for separation. Capillary zone electrophoresis, isoelectric focusing, field-flow fractionation, split-flow thin-cell continuous-separation and other techniques.

作者信息

Giddings J C

机构信息

Field-Flow Fractionation Research Center, Department of Chemistry, University of Utah, Salt Lake City 84112.

出版信息

J Chromatogr. 1989 Oct 20;480:21-33. doi: 10.1016/s0021-9673(01)84277-1.

Abstract

A simple analysis, first presented twenty years ago, showed that the effectiveness of a field-driven separation like electrophoresis, as expressed by the maximum number of theoretical plates (N), is given by the dimensionless ratio of two energies N = -delta mu ext/2RT in which -delta mu ext is the electrical potential energy drop of a charged species and RT is the thermal energy (R is the gas constant and T is the absolute temperature). Quantity -delta mu ext is the product of the force F acting on the species and the path length X of separation. The exceptional power of electrophoresis, for which often N approximately 10(6), can be traced directly to the enormous magnitude of the electrical force F. This paper explores the fundamentals underlying several different means for utilizing these powerful electrical forces for separation, including capillary zone electrophoresis, gel electrophoresis, isoelectric focusing, electrical field-flow fractionation and split-flow thin continuous separation cells. Remarkably, the above equation and its relatives are found to describe the approximate performance of all these diverse electrically driven systems. Factors affecting both the resolving power and separation speed of the systems are addressed; from these considerations some broad optimization criteria emerge. The capabilities of the different methods are compared using numerical examples.

摘要

二十年前首次提出的一项简单分析表明,像电泳这样的场驱动分离的效率,以理论塔板数(N)的最大值来表示,由两种能量的无量纲比给出,即N = -Δμext/2RT,其中-Δμext是带电物种的电势能量降,RT是热能(R是气体常数,T是绝对温度)。量-Δμext是作用于物种的力F与分离路径长度X的乘积。电泳的卓越能力,其N通常约为10^6,可以直接追溯到电力F的巨大强度。本文探讨了利用这些强大电力进行分离的几种不同方法的基本原理,包括毛细管区带电泳、凝胶电泳、等电聚焦、电场流分级分离和分流薄层连续分离池。值得注意的是,发现上述方程及其相关方程描述了所有这些不同电驱动系统的近似性能。讨论了影响系统分辨率和分离速度的因素;从这些考虑中得出了一些广泛的优化标准。使用数值示例比较了不同方法的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验