Suppr超能文献

Muc1在肾脏缺血再灌注损伤期间具有保护作用。

Muc1 is protective during kidney ischemia-reperfusion injury.

作者信息

Pastor-Soler Núria M, Sutton Timothy A, Mang Henry E, Kinlough Carol L, Gendler Sandra J, Madsen Cathy S, Bastacky Sheldon I, Ho Jacqueline, Al-Bataineh Mohammad M, Hallows Kenneth R, Singh Sucha, Monga Satdarshan P, Kobayashi Hanako, Haase Volker H, Hughey Rebecca P

机构信息

Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;

Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana;

出版信息

Am J Physiol Renal Physiol. 2015 Jun 15;308(12):F1452-62. doi: 10.1152/ajprenal.00066.2015. Epub 2015 Apr 29.

Abstract

Ischemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI. Whereas Muc1 was localized on the apical surface of the thick ascending limb, distal convoluted tubule, and collecting duct in the kidneys of sham-treated mice, Muc1 appeared in the cytoplasm and nucleus of all tubular epithelia during IRI. Muc1 was induced during IRI, and Muc1 transcripts and protein were also present in recovering proximal tubule cells. Kidney damage was worse and recovery was blocked during IRI in Muc1 knockout mice compared with congenic control mice. Muc1 knockout mice had reduced levels of HIF-1α, reduced or aberrant induction of HIF-1 target genes involved in the shift of glucose metabolism to glycolysis, and prolonged activation of AMP-activated protein kinase, indicating metabolic stress. Muc1 clearly plays a significant role in enhancing the HIF protective pathway during ischemic insult and recovery in kidney epithelia, providing a new target for developing therapies to treat AKI. Moreover, our data support a role specifically for HIF-1 in epithelial protection of the kidney during IRI as Muc1 is present only in tubule epithelial cells.

摘要

低血压导致的缺血再灌注损伤(IRI)是人类急性肾损伤(AKI)的常见原因。在AKI模型中,缺氧诱导转录因子(HIFs)可协调肾脏内皮细胞和上皮细胞的保护性反应。由于人黏蛋白1(MUC1)可被缺氧诱导,并在培养的上皮细胞中增强HIF-1活性,我们研究了小鼠黏蛋白1(Muc1)在IRI期间是否调节肾脏组织中的HIF-1活性。在假手术处理小鼠的肾脏中,Muc1定位于髓袢升支粗段、远曲小管和集合管的顶端表面,而在IRI期间,Muc1出现在所有肾小管上皮细胞的细胞质和细胞核中。Muc1在IRI期间被诱导,并且在恢复中的近端小管细胞中也存在Muc1转录本和蛋白质。与同基因对照小鼠相比,Muc1基因敲除小鼠在IRI期间肾脏损伤更严重且恢复受阻。Muc1基因敲除小鼠的HIF-1α水平降低,参与葡萄糖代谢向糖酵解转变的HIF-1靶基因诱导减少或异常,并且AMP激活的蛋白激酶激活时间延长,表明存在代谢应激。Muc1在增强肾脏上皮细胞缺血损伤和恢复过程中的HIF保护途径中显然起着重要作用,为开发治疗AKI的疗法提供了新靶点。此外,我们的数据支持HIF-1在IRI期间对肾脏上皮细胞保护的特定作用,因为Muc1仅存在于肾小管上皮细胞中。

相似文献

1
Muc1 is protective during kidney ischemia-reperfusion injury.
Am J Physiol Renal Physiol. 2015 Jun 15;308(12):F1452-62. doi: 10.1152/ajprenal.00066.2015. Epub 2015 Apr 29.
2
Muc1 enhances the β-catenin protective pathway during ischemia-reperfusion injury.
Am J Physiol Renal Physiol. 2016 Mar 15;310(6):F569-79. doi: 10.1152/ajprenal.00520.2015. Epub 2016 Jan 6.
3
KIM-1-mediated anti-inflammatory activity is preserved by MUC1 induction in the proximal tubule during ischemia-reperfusion injury.
Am J Physiol Renal Physiol. 2021 Aug 1;321(2):F135-F148. doi: 10.1152/ajprenal.00127.2021. Epub 2021 Jun 21.
5
Dual role of MUC1 mucin in kidney ischemia-reperfusion injury: Nephroprotector in early phase, but pro-fibrotic in late phase.
Biochim Biophys Acta Mol Basis Dis. 2017 Jun;1863(6):1336-1349. doi: 10.1016/j.bbadis.2017.03.023. Epub 2017 Mar 31.
6
HIF-1α participates in the regulation of S100A16-HRD1-GSK3β/CK1α pathway in renal hypoxia injury.
Cell Death Dis. 2024 May 6;15(5):316. doi: 10.1038/s41419-024-06696-5.
7
p53 regulates renal expression of HIF-1{alpha} and pVHL under physiological conditions and after ischemia-reperfusion injury.
Am J Physiol Renal Physiol. 2008 Dec;295(6):F1666-77. doi: 10.1152/ajprenal.90304.2008. Epub 2008 Sep 24.
8
Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury.
Am J Physiol Renal Physiol. 2021 Mar 1;320(3):F308-F321. doi: 10.1152/ajprenal.00577.2020. Epub 2021 Jan 11.
9
MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression.
Cancer Res. 2009 Jul 15;69(14):5707-15. doi: 10.1158/0008-5472.CAN-08-4905. Epub 2009 Jun 23.

引用本文的文献

2
Expression and distribution of MUC1 in the developing and adult kidney.
Am J Physiol Renal Physiol. 2025 Jan 1;328(1):F107-F120. doi: 10.1152/ajprenal.00206.2024. Epub 2024 Nov 26.
3
From Rare Disorders of Kidney Tubules to Acute Renal Injury: Progress and Prospective.
Kidney Dis (Basel). 2024 Feb 2;10(2):153-166. doi: 10.1159/000536423. eCollection 2024 Apr.
4
Hypoxia controls expression of kidney-pathogenic variants.
Life Sci Alliance. 2023 Jun 14;6(9). doi: 10.26508/lsa.202302078. Print 2023 Sep.
5
Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis.
Front Pharmacol. 2023 Jan 12;13:1041327. doi: 10.3389/fphar.2022.1041327. eCollection 2022.
7
KIM-1-mediated anti-inflammatory activity is preserved by MUC1 induction in the proximal tubule during ischemia-reperfusion injury.
Am J Physiol Renal Physiol. 2021 Aug 1;321(2):F135-F148. doi: 10.1152/ajprenal.00127.2021. Epub 2021 Jun 21.
8
HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury.
Redox Biol. 2020 Sep;36:101671. doi: 10.1016/j.redox.2020.101671. Epub 2020 Aug 7.
9
Effects of Mesenchymal Stem Cell Coculture on Human Lung Small Airway Epithelial Cells.
Biomed Res Int. 2020 Mar 27;2020:9847579. doi: 10.1155/2020/9847579. eCollection 2020.
10
Nrf2 activation protects against lithium-induced nephrogenic diabetes insipidus.
JCI Insight. 2020 Jan 16;5(1):128578. doi: 10.1172/jci.insight.128578.

本文引用的文献

1
Deep Sequencing in Microdissected Renal Tubules Identifies Nephron Segment-Specific Transcriptomes.
J Am Soc Nephrol. 2015 Nov;26(11):2669-77. doi: 10.1681/ASN.2014111067. Epub 2015 Mar 27.
2
Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling.
J Am Soc Nephrol. 2015 Jan;26(1):107-20. doi: 10.1681/ASN.2014010085. Epub 2014 Jul 10.
3
Analysis of hypoxia-induced metabolic reprogramming.
Methods Enzymol. 2014;542:425-55. doi: 10.1016/B978-0-12-416618-9.00022-4.
4
Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury.
J Clin Invest. 2014 Jun;124(6):2396-409. doi: 10.1172/JCI69073. Epub 2014 May 1.
5
Variable clinical presentation of an MUC1 mutation causing medullary cystic kidney disease type 1.
Clin J Am Soc Nephrol. 2014 Mar;9(3):527-35. doi: 10.2215/CJN.06380613. Epub 2014 Feb 7.
6
MUC1: a novel metabolic master regulator.
Biochim Biophys Acta. 2014 Apr;1845(2):126-35. doi: 10.1016/j.bbcan.2014.01.001. Epub 2014 Jan 11.
7
Tubular von Hippel-Lindau knockout protects against rhabdomyolysis-induced AKI.
J Am Soc Nephrol. 2013 Nov;24(11):1806-19. doi: 10.1681/ASN.2013030281. Epub 2013 Aug 22.
9
p53 is renoprotective after ischemic kidney injury by reducing inflammation.
J Am Soc Nephrol. 2013 Jan;24(1):113-24. doi: 10.1681/ASN.2012050469. Epub 2012 Dec 6.
10
MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13787-92. doi: 10.1073/pnas.1203339109. Epub 2012 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验