Suppr超能文献

一种基于模块化的方法从化学-基因异质网络中揭示混合模块。

A modularity-based method reveals mixed modules from chemical-gene heterogeneous network.

作者信息

Song Jianglong, Tang Shihuan, Liu Xi, Gao Yibo, Yang Hongjun, Lu Peng

机构信息

Institute of Automation, Chinese Academy of Sciences, Beijing, China.

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

出版信息

PLoS One. 2015 Apr 30;10(4):e0125585. doi: 10.1371/journal.pone.0125585. eCollection 2015.

Abstract

For a multicomponent therapy, molecular network is essential to uncover its specific mode of action from a holistic perspective. The molecular system of a Traditional Chinese Medicine (TCM) formula can be represented by a 2-class heterogeneous network (2-HN), which typically includes chemical similarities, chemical-target interactions and gene interactions. An important premise of uncovering the molecular mechanism is to identify mixed modules from complex chemical-gene heterogeneous network of a TCM formula. We thus proposed a novel method (MixMod) based on mixed modularity to detect accurate mixed modules from 2-HNs. At first, we compared MixMod with Clauset-Newman-Moore algorithm (CNM), Markov Cluster algorithm (MCL), Infomap and Louvain on benchmark 2-HNs with known module structure. Results showed that MixMod was superior to other methods when 2-HNs had promiscuous module structure. Then these methods were tested on a real drug-target network, in which 88 disease clusters were regarded as real modules. MixMod could identify the most accurate mixed modules from the drug-target 2-HN (normalized mutual information 0.62 and classification accuracy 0.4524). In the end, MixMod was applied to the 2-HN of Buchang naoxintong capsule (BNC) and detected 49 mixed modules. By using enrichment analysis, we investigated five mixed modules that contained primary constituents of BNC intestinal absorption liquid. As a matter of fact, the findings of in vitro experiments using BNC intestinal absorption liquid were found to highly accord with previous analysis. Therefore, MixMod is an effective method to detect accurate mixed modules from chemical-gene heterogeneous networks and further uncover the molecular mechanism of multicomponent therapies, especially TCM formulae.

摘要

对于多组分疗法而言,分子网络对于从整体角度揭示其特定作用模式至关重要。中药方剂的分子系统可以用一个两类异质网络(2-HN)来表示,该网络通常包括化学相似性、化学-靶点相互作用和基因相互作用。揭示分子机制的一个重要前提是从中药方剂复杂的化学-基因异质网络中识别混合模块。因此,我们提出了一种基于混合模块度的新方法(MixMod),用于从2-HN中检测准确的混合模块。首先,我们在具有已知模块结构的基准2-HN上,将MixMod与Clauset-Newman-Moore算法(CNM)、马尔可夫聚类算法(MCL)、Infomap和Louvain进行了比较。结果表明,当2-HN具有混杂的模块结构时,MixMod优于其他方法。然后,这些方法在一个真实的药物-靶点网络上进行了测试,其中88个疾病簇被视为真实模块。MixMod能够从药物-靶点2-HN中识别出最准确的混合模块(归一化互信息为0.62,分类准确率为0.4524)。最后,MixMod应用于步长脑心通胶囊(BNC)的2-HN,并检测到49个混合模块。通过富集分析,我们研究了包含BNC肠吸收液主要成分的五个混合模块。事实上,使用BNC肠吸收液进行的体外实验结果与先前的分析高度吻合。因此,MixMod是一种从化学-基因异质网络中检测准确混合模块,并进一步揭示多组分疗法尤其是中药方剂分子机制的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd9d/4416014/5e0c98a45e0f/pone.0125585.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验