Lauwerys Bernard R, Hernández-Lobato Daniel, Gramme Pierre, Ducreux Julie, Dessy Adrien, Focant Isabelle, Ambroise Jérôme, Bearzatto Bertrand, Nzeusseu Toukap Adrien, Van den Eynde Benoît J, Elewaut Dirk, Gala Jean-Luc, Durez Patrick, Houssiau Frédéric A, Helleputte Thibault, Dupont Pierre
Pôle de pathologies rhumatismales, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain and Department of Rheumatology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
Machine Learning Group, ICTEAM Institute, Université catholique de Louvain, Place Sainte-Barbe 2, B-1348, Louvain-la-Neuve, Belgium.
PLoS One. 2015 Apr 30;10(4):e0122104. doi: 10.1371/journal.pone.0122104. eCollection 2015.
Early diagnosis of rheumatoid arthritis (RA) is an unmet medical need in the field of rheumatology. Previously, we performed high-density transcriptomic studies on synovial biopsies from patients with arthritis, and found that synovial gene expression profiles were significantly different according to the underlying disorder. Here, we wanted to further explore the consistency of the gene expression signals in synovial biopsies of patients with arthritis, using low-density platforms.
Low-density assays (cDNA microarray and microfluidics qPCR) were designed, based on the results of the high-density microarray data. Knee synovial biopsies were obtained from patients with RA, spondyloarthropathies (SA) or osteoarthritis (OA) (n = 39), and also from patients with initial undifferentiated arthritis (UA) (n = 49).
According to high-density microarray data, several molecular pathways are differentially expressed in patients with RA, SA and OA: T and B cell activation, chromatin remodelling, RAS GTPase activation and extracellular matrix regulation. Strikingly, disease activity (DAS28-CRP) has a significant influence on gene expression patterns in RA samples. Using the low-density assays, samples from patients with OA are easily discriminated from RA and SA samples. However, overlapping molecular patterns are found, in particular between RA and SA biopsies. Therefore, prediction of the clinical diagnosis based on gene expression data results in a diagnostic accuracy of 56.8%, which is increased up to 98.6% by the addition of specific clinical symptoms in the prediction algorithm. Similar observations are made in initial UA samples, in which overlapping molecular patterns also impact the accuracy of the diagnostic algorithm. When clinical symptoms are added, the diagnostic accuracy is strongly improved.
Gene expression signatures are overall different in patients with OA, RA and SA, but overlapping molecular signatures are found in patients with these conditions. Therefore, an accurate diagnosis in patients with UA requires a combination of gene expression and clinical data.
类风湿关节炎(RA)的早期诊断是风湿病领域尚未满足的医疗需求。此前,我们对关节炎患者的滑膜活检组织进行了高密度转录组学研究,发现滑膜基因表达谱因潜在疾病而有显著差异。在此,我们希望使用低密度平台进一步探索关节炎患者滑膜活检组织中基因表达信号的一致性。
基于高密度微阵列数据的结果设计了低密度检测方法(cDNA微阵列和微流控定量PCR)。从类风湿关节炎、脊柱关节炎(SA)或骨关节炎(OA)患者(n = 39)以及初始未分化关节炎(UA)患者(n = 49)中获取膝关节滑膜活检组织。
根据高密度微阵列数据,RA、SA和OA患者中几种分子途径存在差异表达:T和B细胞活化、染色质重塑、RAS GTP酶活化和细胞外基质调节。引人注目的是,疾病活动度(DAS28-CRP)对RA样本中的基因表达模式有显著影响。使用低密度检测方法,OA患者的样本很容易与RA和SA样本区分开来。然而,发现了重叠的分子模式,特别是在RA和SA活检组织之间。因此,基于基因表达数据预测临床诊断的准确率为56.8%,通过在预测算法中加入特定临床症状,准确率可提高至98.6%。在初始UA样本中也有类似的观察结果,其中重叠的分子模式也影响诊断算法的准确性。加入临床症状后,诊断准确率显著提高。
OA、RA和SA患者的基因表达特征总体不同,但在这些疾病患者中发现了重叠的分子特征。因此,UA患者的准确诊断需要基因表达和临床数据相结合。