Suppr超能文献

基于环境信息的土壤钾含量空间插值集成学习

Ensemble learning for spatial interpolation of soil potassium content based on environmental information.

作者信息

Liu Wei, Du Peijun, Wang Dongchen

机构信息

Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, Jiangsu, People's Republic of China; School of Geodesy and Geometrics, Jiangsu Normal University, Xuzhou, Jiangsu, People's Republic of China.

Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.

出版信息

PLoS One. 2015 Apr 30;10(4):e0124383. doi: 10.1371/journal.pone.0124383. eCollection 2015.

Abstract

One important method to obtain the continuous surfaces of soil properties from point samples is spatial interpolation. In this paper, we propose a method that combines ensemble learning with ancillary environmental information for improved interpolation of soil properties (hereafter, EL-SP). First, we calculated the trend value for soil potassium contents at the Qinghai Lake region in China based on measured values. Then, based on soil types, geology types, land use types, and slope data, the remaining residual was simulated with the ensemble learning model. Next, the EL-SP method was applied to interpolate soil potassium contents at the study site. To evaluate the utility of the EL-SP method, we compared its performance with other interpolation methods including universal kriging, inverse distance weighting, ordinary kriging, and ordinary kriging combined geographic information. Results show that EL-SP had a lower mean absolute error and root mean square error than the data produced by the other models tested in this paper. Notably, the EL-SP maps can describe more locally detailed information and more accurate spatial patterns for soil potassium content than the other methods because of the combined use of different types of environmental information; these maps are capable of showing abrupt boundary information for soil potassium content. Furthermore, the EL-SP method not only reduces prediction errors, but it also compliments other environmental information, which makes the spatial interpolation of soil potassium content more reasonable and useful.

摘要

从点样本获取土壤属性连续表面的一种重要方法是空间插值。在本文中,我们提出了一种将集成学习与辅助环境信息相结合的方法,以改进土壤属性的插值(以下简称EL-SP)。首先,我们根据实测值计算了中国青海湖地区土壤钾含量的趋势值。然后,基于土壤类型、地质类型、土地利用类型和坡度数据,用集成学习模型模拟剩余残差。接下来,应用EL-SP方法对研究地点的土壤钾含量进行插值。为了评估EL-SP方法的效用,我们将其性能与其他插值方法进行了比较,包括通用克里金法、反距离加权法、普通克里金法以及普通克里金法与地理信息相结合的方法。结果表明,EL-SP的平均绝对误差和均方根误差低于本文测试的其他模型生成的数据。值得注意的是,由于结合使用了不同类型的环境信息,EL-SP地图比其他方法能够描述更多局部详细信息以及更准确的土壤钾含量空间格局;这些地图能够显示土壤钾含量的突变边界信息。此外,EL-SP方法不仅减少了预测误差,还补充了其他环境信息,这使得土壤钾含量的空间插值更加合理和有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989f/4415809/3c89a7d6ea8f/pone.0124383.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验