Kar Paramita, Ida Yumi, Kanetomo Takuya, Drew Michael G B, Ishida Takayuki, Ghosh Ashutosh
Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.
Dalton Trans. 2015 Jun 7;44(21):9795-804. doi: 10.1039/c5dt00709g.
One Mn(II) coordination polymer, [Mn(o-(NO2)C6H4COO)2(pyz)(H2O)]n (1), has been synthesized and oxidized with n-Bu4NMnO4 in non-aqueous media to two mixed-valence hexanuclear Mn(II/III) complexes [MnIII2MnII4O2(pyz)0.61/(MeOH)0.39(o-(NO2)C6H4COO)10·(H2O)·{(CH3)2CO}2]·(CH3)2CO (2) and [MnIII2MnII4O2(pyz)0.28/(MeCN)3.72(o-(NO2)C6H4COO)10·(H2O)] (3) (where pyz = pyrazine). All three complexes were characterized by elemental analyses, IR spectroscopy, single-crystal X-ray diffraction analyses, and variable-temperature magnetic measurements. The structural analyses reveal that complex 1 is comprised of linear chains of pyz bridged Mn(II), which are further linked to one another by syn–anti carboxylate bridges, giving rise to a two-dimensional (2D) net. Complexes 2 and 3 feature mixed valence [MnIII2MnII4] units in which each of the six manganese centres reside in an octahedral environment. Apart from the variations in terminal ligands (acetone for 2 and acetonitrile for 3), the complexes are very similar. Using 3,5-di-tert-butyl catechol (3,5-DTBC) as the substrate, the catecholase-like activity of the complexes has been studied and it is found that the mixed valent Mn6 complexes (2 and 3) are much more active towards aerial oxidation of catechol compared to the Mn(II) complex (1). Variable-temperature (1.8–300 K) magnetic susceptibility measurements showed the presence of antiferromagnetic coupling in all three complexes. The magnetic data have been fitted with a 2D quadratic model derived by Lines, giving the exchange constant J/kB = −0.0788(5) K for 1. For 2 and 3, antiferromagnetic interactions within the Mn6 cluster have been fitted with models containing three exchange constants: JA/kB = −70 K, JB/kB = −0.5 K, JC/kB = −2.9 K for 2 and JA/kB = −60 K, JB/kB = −0.3 K, JC/kB = −2.8 K for 3.
已合成一种锰(II)配位聚合物[Mn(o-(NO2)C6H4COO)2(pyz)(H2O)]n(1),并在非水介质中用四丁基铵锰酸盐(n-Bu4NMnO4)将其氧化为两种混合价态的六核锰(II/III)配合物[MnIII2MnII4O2(pyz)0.61/(MeOH)0.39(o-(NO2)C6H4COO)10·(H2O)·{(CH3)2CO}2]·(CH3)2CO(2)和[MnIII2MnII4O2(pyz)0.28/(MeCN)3.72(o-(NO2)C6H4COO)10·(H2O)](3)(其中pyz = 吡嗪)。通过元素分析、红外光谱、单晶X射线衍射分析和变温磁性测量对这三种配合物进行了表征。结构分析表明,配合物1由吡嗪桥连的锰(II)线性链组成,这些链通过顺-反羧酸酯桥进一步相互连接,形成二维(2D)网络。配合物2和3具有混合价态的[MnIII2MnII4]单元,其中六个锰中心中的每一个都处于八面体环境中。除了末端配体的变化(2为丙酮,3为乙腈)外,这些配合物非常相似。以3,5-二叔丁基邻苯二酚(3,5-DTBC)为底物,研究了配合物的类儿茶酚酶活性,发现与锰(II)配合物(1)相比,混合价态的Mn6配合物(2和3)对邻苯二酚的空气氧化活性更高。变温(1.8 - 300 K)磁化率测量表明,这三种配合物中均存在反铁磁耦合。磁性数据已用Lines推导的二维二次模型进行拟合,配合物1的交换常数J/kB = -0.0788(5) K。对于配合物2和3,Mn6簇内的反铁磁相互作用已用包含三个交换常数的模型进行拟合:配合物2的JA/kB = -70 K,JB/kB = -0.5 K,JC/kB = -2.9 K;配合物3的JA/kB = -60 K,JB/kB = -0.3 K,JC/kB = -2.8 K。