L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028 Kiev, Ukraine.
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, GSP-1, Russia.
Molecules. 2021 Feb 15;26(4):1021. doi: 10.3390/molecules26041021.
Reaction of 2,2'-bipyridine (2,2'-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)(EtOH)] led to the formation of binuclear complexes [Mn(Piv)L] (L = 2,2'-bipy (), phen (); Piv is the anion of pivalic acid). Oxidation of or by air oxygen resulted in the formation of tetranuclear Mn complexes [MnO(Piv)L] (L = 2,2'-bipy (), phen ()). The hexanuclear complex [Mn(OH)(Piv)(pym)] () was formed in the reaction of [Mn(Piv)(EtOH)] with pyrimidine (pym), while oxidation of produced the coordination polymer [MnO(Piv)(pym)] (). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn(OH)(Piv)(µ-pz)] (). Interaction of [Mn(Piv)(EtOH)] with FeCl resulted in the formation of the hexanuclear complex [MnFeO(Piv)(MeCN)(HPiv)] (). The reactions of [MnFeO(OAc)(HO)] with 4,4'-bipyridine (4,4'-bipy) or -1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFeO(OAc)L]·2DMF, where L = 4,4'-bipy (·2DMF), bpe (·2DMF) and [MnFeO(OAc)(bpe)(DMF)]·3.5DMF (·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of ·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear Mn complexes ( = -1.03 cm for and ). According to magnetic data analysis ( = -(2.69 ÷ 0.42) cm) and DFT calculations ( = -(6.9 ÷ 0.9) cm) weak antiferromagnetic coupling between Mn ions also occurred in the tetranuclear {Mn(OH)(Piv)} unit of the 2D polymer . In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFeO(OAc)} in ·3.5DMF ( = -57.8 cm, = -20.12 cm).
2,2'-联吡啶(2,2'-bipy)或 1,10-菲咯啉(phen)与[Mn(Piv)(EtOH)]反应生成双核配合物[Mn(Piv)L](L = 2,2'-bipy (), phen (); Piv 是特戊酸的阴离子)。空气中氧气氧化 或 生成四核 Mn 配合物[MnO(Piv)L](L = 2,2'-bipy (), phen ())。[Mn(Piv)(EtOH)]与嘧啶(pym)反应生成六核配合物[Mn(OH)(Piv)(pym)](),而氧化 生成配位聚合物[MnO(Piv)(pym)]()。用吡嗪(pz)代替嘧啶得到二维配位聚合物[Mn(OH)(Piv)(µ-pz)]()。[Mn(Piv)(EtOH)]与 FeCl 相互作用生成六核配合物[MnFeO(Piv)(MeCN)(HPiv)]()。[MnFeO(OAc)(HO)]与 4,4'-联吡啶(4,4'-bipy)或 -1,2-(4-吡啶基)乙烯(bpe)反应生成一维聚合物[MnFeO(OAc)L]·2DMF,其中 L = 4,4'-bipy (·2DMF)、bpe (·2DMF)和[MnFeO(OAc)(bpe)(DMF)]·3.5DMF (·3.5DMF)。所有配合物均通过单晶 X 射线衍射进行了表征。·3.5DMF 的去溶剂化导致多孔晶体结构的坍塌,这通过 PXRD 和 N 吸附测量得到了证实,而醇吸附导致多孔结构的恢复。双核 Mn 配合物中发现了弱反铁磁交换(= -1.03 cm 对于 和 )。根据磁数据分析(= -(2.69 ÷ 0.42) cm)和 DFT 计算(= -(6.9 ÷ 0.9) cm),二维聚合物 中{Mn(OH)(Piv)}单元中的 Mn 离子之间也发生了弱反铁磁耦合。相比之下,在氧桥联的三核片段{MnFeO(OAc)}中发现了强反铁磁耦合在·3.5DMF 中(= -57.8 cm,= -20.12 cm)。