Waugh Matthew, Carlsen Autumn, Sean David, Slater Gary W, Briggs Kyle, Kwok Harold, Tabard-Cossa Vincent
Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
Electrophoresis. 2015 Aug;36(15):1759-67. doi: 10.1002/elps.201400488. Epub 2015 Jun 3.
We demonstrate the ability to slow DNA translocations through solid-state nanopores by interfacing the trans side of the membrane with gel media. In this work, we focus on two reptation regimes: when the DNA molecule is flexible on the length scale of a gel pore, and when the DNA behaves as persistent segments in tight gel pores. The first regime is investigated using agarose gels, which produce a very wide distribution of translocation times for 5 kbp dsDNA fragments, spanning over three orders of magnitude. The second regime is attained with polyacrylamide gels, which can maintain a tight spread and produce a shift in the distribution of the translocation times by an order of magnitude for 100 bp dsDNA fragments, if intermolecular crowding on the trans side is avoided. While previous approaches have proven successful at slowing DNA passage, they have generally been detrimental to the S/N, capture rate, or experimental simplicity. These results establish that by controlling the regime of DNA movement exiting a nanopore interfaced with a gel medium, it is possible to address the issue of rapid biomolecule translocations through nanopores-presently one of the largest hurdles facing nanopore-based analysis-without affecting the signal quality or capture efficiency.
我们展示了通过将膜的反面与凝胶介质连接来减缓DNA通过固态纳米孔的能力。在这项工作中,我们关注两种爬行模式:当DNA分子在凝胶孔的长度尺度上是柔性的时候,以及当DNA在紧密的凝胶孔中表现为持久片段的时候。第一种模式使用琼脂糖凝胶进行研究,对于5kbp的双链DNA片段,其产生的转运时间分布非常广泛,跨越三个数量级。第二种模式通过聚丙烯酰胺凝胶实现,如果避免反面的分子间拥挤,对于100bp的双链DNA片段,聚丙烯酰胺凝胶可以保持紧密的分布,并使转运时间分布发生一个数量级的偏移。虽然先前的方法已证明在减缓DNA通过方面是成功的,但它们通常对信噪比、捕获率或实验简易性不利。这些结果表明,通过控制DNA从与凝胶介质相连的纳米孔中流出的运动模式,有可能解决生物分子通过纳米孔快速转运的问题——这是目前基于纳米孔分析面临的最大障碍之一——而不影响信号质量或捕获效率。