Shumway C A
Neurobiology Unit, Scripps Institution of Oceanography, UCSD, La Jolla, California 92093.
J Neurosci. 1989 Dec;9(12):4388-99. doi: 10.1523/JNEUROSCI.09-12-04388.1989.
The electrosensory lateral line lobe in the weakly electric gymnotiform fish Eigenmannia contains 3 topographic maps of high-frequency (tuberous) electroreceptive information from the body surface. The maps receive identical primary afferent input since axonal collaterals of both amplitude- and phase-coding afferents project to all 3 maps (Heiligenberg and Dye, 1982). Response properties of the amplitude-coding pyramidal neurons in the multiple maps were investigated in order to determine whether the maps differ physiologically. Units in the lateral map have larger receptive fields and are more sensitive than units in the centromedial map. The former units respond more phasically and with shorter latencies to step changes in stimulus amplitude (measured from the stimulus onset to the maximum response). Although 75% of pyramidal cells in all maps show a center-surround receptive-field organization, the strength of the inhibitory surround varies among maps, tending to be weakest for units in the lateral map and strongest for units in the centromedial map. Pyramidal neurons also differ in their responses with respect to the temporal frequency of amplitude modulations; the majority of units in the lateral map prefer high temporal frequencies, while those in the centromedial map prefer low frequencies. These results suggest that the multiple electrosensory maps could provide the initial separation of spatial and temporal processing of sensory information, much as has been suggested for X and Y ganglion cells in the cat retina (Shapley and Perry, 1986). The centromedial map could provide high spatial contrast with correspondingly poor temporal resolution, while the more sensitive units in the lateral map could best provide information about temporal changes in stimulus amplitude.
弱电裸背电鳗的电感觉侧线叶包含来自体表的高频(结节状)电感受信息的3个地形图。这些地图接收相同的初级传入输入,因为幅度编码和相位编码传入神经的轴突侧支投射到所有3个地图(海利根伯格和戴伊,1982年)。为了确定这些地图在生理上是否不同,研究了多个地图中幅度编码锥体神经元的反应特性。外侧地图中的神经元比中央内侧地图中的神经元具有更大的感受野,并且更敏感。前者对刺激幅度的阶跃变化(从刺激开始到最大反应测量)反应更相位化且潜伏期更短。尽管所有地图中75%的锥体细胞表现出中心-周边感受野组织,但抑制性周边的强度在不同地图之间有所不同,外侧地图中的神经元往往最弱,而中央内侧地图中的神经元最强。锥体神经元在对幅度调制的时间频率的反应方面也有所不同;外侧地图中的大多数神经元偏好高时间频率,而中央内侧地图中的神经元偏好低频率。这些结果表明,多个电感觉地图可以提供感觉信息的空间和时间处理的初始分离,就像猫视网膜中的X和Y神经节细胞所建议的那样(沙普利和佩里,1986年)。中央内侧地图可以提供高空间对比度,但时间分辨率相应较差,而外侧地图中更敏感的神经元可以最好地提供有关刺激幅度时间变化的信息。