Suppr超能文献

利用森林资源清查、遥感和地统计技术绘制地上木质生物量图。

Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

作者信息

Yadav Bechu K V, Nandy S

机构信息

Department of Forests, Kathmandu, Nepal.

出版信息

Environ Monit Assess. 2015 May;187(5):308. doi: 10.1007/s10661-015-4551-1. Epub 2015 May 1.

Abstract

Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

摘要

绘制森林生物量对于估算二氧化碳排放量以及森林和生态系统生产力的规划与监测至关重要。本研究试图整合森林清查、遥感和地统计技术,即直接辐射关系(DRR)、k近邻法(k-NN)和协同克里金法(CoK)来绘制地上木质生物量(AGWB),并评估其准确性。印度北阿坎德邦卡尔西水土保持分区的蒂姆利森林区的一部分被选用于本研究。采用分层随机抽样从36个面积为0.1公顷(31.62米×31.62米)的样地收集生物物理数据。使用特定树种的体积方程来计算体积,并乘以比重以获得生物量。利用对2012年12月印度遥感卫星P6 LISS-III数据的屏幕目视解译,划分出三个森林类型密度等级,即10%-40%、40%-70%和大于70%的娑罗双树林,以及四个非森林等级。森林类型密度不同层次的体积范围为189.84至484.36立方米·公顷⁻¹。该森林的总蓄积量为2,024,652.88立方米。AGWB范围为143至421毫克·公顷⁻¹。光谱波段和植被指数被用作DRR、k-NN和CoK的自变量,生物量作为因变量。经过验证和比较,发现马氏距离的k-NN方法(均方根误差(RMSE)=42.25毫克·公顷⁻¹)是最佳方法,其次是模糊距离和欧几里得距离,RMSE分别为44.23和45.13毫克·公顷⁻¹。DRR被发现是最不准确的方法,RMSE为67.17毫克·公顷⁻¹。该研究突出了整合森林清查、遥感和地统计技术进行森林生物量测绘的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验