Marvin David C, Asner Gregory P, Knapp David E, Anderson Christopher B, Martin Roberta E, Sinca Felipe, Tupayachi Raul
Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305
Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):E5224-32. doi: 10.1073/pnas.1412999111. Epub 2014 Nov 24.
Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.
每年,热带森林转化为生物量的大气碳比地球上任何陆地生态系统都多,这凸显了准确的热带森林结构和生物量地图对于理解和管理全球碳循环的重要性。长期以来,生态学家一直将实地清查样地作为了解景观到区域尺度森林结构和生物量的主要工具,默认这些样地能准确代表其周围的景观。然而,尚无研究使用连续的高空间分辨率数据来检验热带森林中的实地样地是否符合这一假设。我们利用在秘鲁三个地区获取的机载激光雷达(光探测和测距)数据,评估了一组典型实地样地相对于其周围宿主景观的代表性。我们发现,在低地亚马逊和安第斯山地景观中,森林冠层结构(高度、间隙和层次)以及地上生物量均存在显著的平均偏差(9% - 98%)。此外,模拟结果表明,要在景观尺度上准确估算地上生物量,需要数量不切实际的1公顷实地样地(每个景观从10个到100多个)。这些偏差应促使人们谨慎使用样地将森林动态外推到更大尺度,并且表明在热带森林生物量研究中,需要从根本上转向高分辨率主动遥感技术作为主要采样工具。减少森林结构和生物量遥感估计的偏差和不确定性,是迈向成功的热带森林保护和气候变化缓解政策的关键一步。