Duan Guangyou, Walther Dirk
Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany,
Methods Mol Biol. 2015;1306:177-94. doi: 10.1007/978-1-4939-2648-0_14.
The succession of protein activation and deactivation mediated by phosphorylation and dephosphorylation events constitutes a key mechanism of molecular information transfer in cellular systems. To deduce the details of those molecular information cascades and networks has been a central goal pursued by both experimental and computational approaches. Many computational network reconstruction methods employing an array of different statistical learning methods have been developed to infer phosphorylation networks based on different types of molecular data sets such as protein sequence, protein structure, or phosphoproteomics data. In this chapter, different computational network inference methods and resources for biological network reconstruction with a particular focus on phosphorylation networks are surveyed.
由磷酸化和去磷酸化事件介导的蛋白质激活与失活过程,构成了细胞系统中分子信息传递的关键机制。推断这些分子信息级联反应和网络的细节,一直是实验方法和计算方法所追求的核心目标。许多采用一系列不同统计学习方法的计算网络重建方法已经被开发出来,用于基于不同类型的分子数据集(如蛋白质序列、蛋白质结构或磷酸化蛋白质组学数据)推断磷酸化网络。在本章中,我们将综述不同的计算网络推断方法以及用于生物网络重建的资源,特别关注磷酸化网络。