Suppr超能文献

计算磷酸化网络重建:方法与资源

Computational phosphorylation network reconstruction: methods and resources.

作者信息

Duan Guangyou, Walther Dirk

机构信息

Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany,

出版信息

Methods Mol Biol. 2015;1306:177-94. doi: 10.1007/978-1-4939-2648-0_14.

Abstract

The succession of protein activation and deactivation mediated by phosphorylation and dephosphorylation events constitutes a key mechanism of molecular information transfer in cellular systems. To deduce the details of those molecular information cascades and networks has been a central goal pursued by both experimental and computational approaches. Many computational network reconstruction methods employing an array of different statistical learning methods have been developed to infer phosphorylation networks based on different types of molecular data sets such as protein sequence, protein structure, or phosphoproteomics data. In this chapter, different computational network inference methods and resources for biological network reconstruction with a particular focus on phosphorylation networks are surveyed.

摘要

由磷酸化和去磷酸化事件介导的蛋白质激活与失活过程,构成了细胞系统中分子信息传递的关键机制。推断这些分子信息级联反应和网络的细节,一直是实验方法和计算方法所追求的核心目标。许多采用一系列不同统计学习方法的计算网络重建方法已经被开发出来,用于基于不同类型的分子数据集(如蛋白质序列、蛋白质结构或磷酸化蛋白质组学数据)推断磷酸化网络。在本章中,我们将综述不同的计算网络推断方法以及用于生物网络重建的资源,特别关注磷酸化网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验