Suppr超能文献

水中甲烷相关性及渗透第二维里系数的温度和压力依赖性

Temperature and pressure dependence of methane correlations and osmotic second virial coefficients in water.

作者信息

Ashbaugh Henry S, Weiss Katie, Williams Steven M, Meng Bin, Surampudi Lalitanand N

机构信息

†Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States.

‡Alfred University, Alfred, New York 14802, United States.

出版信息

J Phys Chem B. 2015 May 21;119(20):6280-94. doi: 10.1021/acs.jpcb.5b02056. Epub 2015 May 12.

Abstract

We report methane's osmotic virial coefficient over the temperatures 275 to 370 K and pressures from 1 bar up to 5000 bar evaluated using molecular simulations of a united-atom description of methane in TIP4P/2005 water. In the first half of this work, we describe an approach for calculating the water-mediated contribution to the methane-methane potential-of-mean force over all separations down to complete overlap. The enthalpic, entropic, heat capacity, volumetric, compressibility, and thermal expansivity contributions to the water-mediated interaction free energy are subsequently extracted from these simulations by fitting to a thermodynamic expansion over all the simulated state points. In the second half of this work, methane's correlation functions are used to evaluate its osmotic second virial coefficient in the temperature-pressure plane. The virial coefficients evaluated from the McMillan-Mayer correlation function integral are shown to be in excellent agreement with those determined from the concentration dependence of methane's excess chemical potential, providing an independent thermodynamic consistency check on the accuracy of the procedures used here. At atmospheric pressure the osmotic virial coefficient decreases with increasing temperature, indicative of increasing hydrophobic interactions. At low temperature, the virial coefficient decreases with increasing pressure while at high temperature the virial coefficient increases with increasing pressure, reflecting the underlying hyperbolic dependence of the virial coefficient on temperature and pressure. The transition between a decreasing to increasing pressure response of the osmotic virial coefficient is shown to follow the response of the methane-methane contact peak to changes in pressure as a function of temperature, though a universal correlation is not observed.

摘要

我们报告了通过对甲烷在TIP4P/2005水中的联合原子描述进行分子模拟,评估得到的甲烷在275至370K温度以及1巴至5000巴压力范围内的渗透维里系数。在这项工作的前半部分,我们描述了一种计算水介导对甲烷 - 甲烷平均力势贡献的方法,该贡献涵盖了直至完全重叠的所有间距。随后,通过对所有模拟状态点进行热力学展开拟合,从这些模拟中提取了水介导相互作用自由能的焓、熵、热容、体积、压缩性和热膨胀性贡献。在这项工作的后半部分,利用甲烷的关联函数在温度 - 压力平面上评估其渗透第二维里系数。从麦克米兰 - 迈耶尔关联函数积分评估得到的维里系数与从甲烷过量化学势的浓度依赖性确定的维里系数显示出极好的一致性,这为这里所使用程序的准确性提供了一个独立的热力学一致性检验。在大气压下,渗透维里系数随温度升高而降低,这表明疏水相互作用增强。在低温下,维里系数随压力升高而降低,而在高温下,维里系数随压力升高而增加,这反映了维里系数对温度和压力的潜在双曲线依赖性。尽管未观察到普遍相关性,但渗透维里系数从随压力降低到随压力升高的转变显示出与甲烷 - 甲烷接触峰随压力变化(作为温度的函数)的响应一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验