Cieśla Michał, Dybiec Bartłomiej, Sokolov Igor, Gudowska-Nowak Ewa
M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany.
J Chem Phys. 2015 Apr 28;142(16):164904. doi: 10.1063/1.4919368.
We study two-dimensional diffusive motion of a tracer particle in restricted, crowded anisotropic geometries. The underlying medium is formed from a monolayer of elongated molecules [Cieśla J. Chem. Phys. 140, 044706 (2014)] of known concentration. Within this mesh structure, a tracer molecule is allowed to perform a Cauchy random walk with uncorrelated steps. Our analysis shows that the presence of obstacles significantly influences the motion, which in an obstacle-free space would be of a superdiffusive type. At the same time, the selfdiffusive process reveals different anomalous properties, both at the level of a single trajectory realization and after the ensemble averaging. In particular, due to obstacles, the sample mean squared displacement asymptotically grows sublinearly in time, suggesting a non-Markov character of motion. Closer inspection of survival probabilities indicates, however, that the underlying diffusion is memoryless over long time scales despite a strong inhomogeneity of the motion induced by the orientational ordering.
我们研究示踪粒子在受限、拥挤的各向异性几何结构中的二维扩散运动。基础介质由已知浓度的单层细长分子构成[Cieśla J. Chem. Phys. 140, 044706 (2014)]。在这种网格结构中,一个示踪分子被允许进行具有不相关步长的柯西随机游走。我们的分析表明,障碍物的存在显著影响运动,在无障碍物空间中运动将是超扩散类型。同时,自扩散过程在单个轨迹实现层面和系综平均之后都显示出不同的反常性质。特别地,由于障碍物,样本平均平方位移随时间渐近地呈亚线性增长,这表明运动具有非马尔可夫特征。然而,对生存概率的仔细检查表明,尽管取向有序导致运动存在很强的不均匀性,但潜在的扩散在长时间尺度上是无记忆的。