IEEE Trans Image Process. 2015 Oct;24(10):2955-70. doi: 10.1109/TIP.2015.2428052. Epub 2015 Apr 29.
Slow feature analysis (SFA) is a dimensionality reduction technique which has been linked to how visual brain cells work. In recent years, the SFA was adopted for computer vision tasks. In this paper, we propose an exact kernel SFA (KSFA) framework for positive definite and indefinite kernels in Krein space. We then formulate an online KSFA which employs a reduced set expansion. Finally, by utilizing a special kind of kernel family, we formulate exact online KSFA for which no reduced set is required. We apply the proposed system to develop a SFA-based change detection algorithm for stream data. This framework is employed for temporal video segmentation and tracking. We test our setup on synthetic and real data streams. When combined with an online learning tracking system, the proposed change detection approach improves upon tracking setups that do not utilize change detection.
慢特征分析(SFA)是一种降维技术,与视觉脑细胞的工作方式有关。近年来,SFA 被应用于计算机视觉任务。在本文中,我们提出了一种在 Krein 空间中对正定和不定核进行精确核 SFA(KSFA)的框架。然后,我们提出了一种在线 KSFA,它采用了简化集扩展。最后,通过利用一种特殊的核族,我们提出了不需要简化集的精确在线 KSFA。我们将所提出的系统应用于开发一种基于 SFA 的流数据变化检测算法。该框架用于时间视频分割和跟踪。我们在合成和真实数据流上测试了我们的设置。当与在线学习跟踪系统结合使用时,所提出的变化检测方法优于不利用变化检测的跟踪设置。