Suppr超能文献

基于可穿戴脑电图传感器预测心理压力的信号质量评估模型

Signal Quality Assessment Model for Wearable EEG Sensor on Prediction of Mental Stress.

作者信息

Hu Bin, Peng Hong, Zhao Qinglin, Hu Bo, Majoe Dennis, Zheng Fang, Moore Philip

出版信息

IEEE Trans Nanobioscience. 2015 Jul;14(5):553-61. doi: 10.1109/TNB.2015.2420576. Epub 2015 Apr 29.

Abstract

Electroencephalogram (EEG) plays an important role in E-healthcare systems, especially in the mental healthcare area, where constant and unobtrusive monitoring is desirable. In the context of OPTIMI project, a novel, low cost, and light weight wearable EEG sensor has been designed and produced. In order to improve the performance and reliability of EEG sensors in real-life settings, we propose a method to evaluate the quality of EEG signals, based on which users can easily adjust the connection between electrodes and their skin. Our method helps to filter invalid EEG data from personal trials in both domestic and office settings. We then apply an algorithm based on Discrete Wavelet Transformation (DWT) and Adaptive Noise Cancellation (ANC) which has been designed to remove ocular artifacts (OA) from the EEG signal. DWT is applied to obtain a reconstructed OA signal as a reference while ANC, based on recursive least squares, is used to remove the OA from the original EEG data. The newly produced sensors were tested and deployed within the OPTIMI framework for chronic stress detection. EEG nonlinear dynamics features and frontal asymmetry of theta, alpha, and beta bands have been selected as biological indicators for chronic stress, showing relative greater right anterior EEG data activity in stressful individuals. Evaluation results demonstrate that our EEG sensor and data processing algorithms have successfully addressed the requirements and challenges of a portable system for patient monitoring, as envisioned by the EU OPTIMI project.

摘要

脑电图(EEG)在电子医疗保健系统中发挥着重要作用,尤其是在精神医疗保健领域,该领域需要持续且不引人注意的监测。在OPTIMI项目的背景下,一种新型、低成本且重量轻的可穿戴式EEG传感器已被设计并生产出来。为了提高EEG传感器在实际应用中的性能和可靠性,我们提出了一种评估EEG信号质量的方法,基于此用户可以轻松调整电极与皮肤之间的连接。我们的方法有助于从家庭和办公室环境中的个人试验中过滤无效的EEG数据。然后,我们应用一种基于离散小波变换(DWT)和自适应噪声消除(ANC)的算法,该算法旨在从EEG信号中去除眼电伪迹(OA)。应用DWT来获取重建的OA信号作为参考,而基于递归最小二乘法的ANC则用于从原始EEG数据中去除OA。新生产的传感器在OPTIMI框架内进行了慢性应激检测测试和部署。EEG非线性动力学特征以及θ、α和β波段的额叶不对称性已被选为慢性应激的生物学指标,显示出压力大的个体右前额EEG数据活动相对更强。评估结果表明,我们的EEG传感器和数据处理算法已成功满足了欧盟OPTIMI项目所设想的便携式患者监测系统的要求和挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验